PREVALENCE OF MULTIDRUG-RESISTANT Staphylococcus aureus AND Salmonella Enteritidis IN MEAT PRODUCTS RETAILED IN ZAGAZIG CITY, EGYPT

Alaa Eldin M.A. Morshdy¹, Wageh S. Darwish^{1*}, Waiel M. Salah El-Dien², Sahar M. Khalifa²

¹Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, ²Food Control Department, Animal Health Research Institute, Zagazig Province Laboratory, Zagazig, Egypt

*Corresponding author, E-mail: wagehdarwish@zu.edu.eg

Abstract: This study aimed to monitor the hygienic status of fresh minced meat, smoked sausage and fresh beef burger (50 samples, each) retailed in Zagazig city, Egypt. Aerobic plate count, total Staphylococcus aureus count and most probable number of coliforms have been conducted. The prevalence, antibiotic susceptibility as well as detection of the drug resistance associated virulence genes of S. aureus (mecA, blaZ, and aac (6') aph (2")) and Salmonella species (blaTEM, tetA(A), and floR) in the examined meat products have been carried out. The highest mean (log₁₀ cfu/g) of aerobic plate counts (5.44±0.11) and most probable number (4.15±0.10-log10 MPN/g) were recorded in minced meat. However, the highest mean of S. aureus counts (3.47±0.12-log10 cfu/g) was recorded in beef burger. Aerobic plate counts, most probable number and S. aureus counts exceeded the recommendations of Egypt Organization for Standardization by (20, 4 and 16%), (14, 12 and 20%) and (50, 10 and 20%) in minced meat, sausage and beef burger, respectively. Salmonella Enteritidis was detected in 4 (8%) beef burger. However, S. aureus was isolated from minced meat and beef burger (5 samples, each, 10%) and 4 sausage samples (8%). mecA, blaZ and aac(6')aph(2") were detected in all S. aureus isolates. blaTEM, tetA(A) and florR were detected in the all S. Enteritidis isolates. In conclusion, the achieved results revealed inadequate hygienic measures adopted during preparation of such meat products. Therefore, strict hygienic practices should be followed before serving such products to consumers.

Key words: S. aureus; Salmonella Enteritidis; drug resistance; meat products

Introduction

Meat products such as minced meat, sausage and beef burger are considered rich sources for animal derived proteins, essential fatty acids, fat soluble vitamins and minerals such as iron and phosphorus. In addition, such meat

products have their unique aroma and flavour which make them highly attractive, especially for children (1). However, such meat products may be on responsible for human illnesses by food-borne pathogens such as *Staphylococcus aureus* (S. aureus) and Salmonella species.

Received: August 2018

Accepted for publication: September 2018

Microbial contamination of meat products may arise from the raw ingredients used in their manufacture, improper handling during transportation, processing, storage and distribution (2). Therefore, evaluation of the hygienic status of meat products is a major task for meat hygiene and food safety sectors in Egypt.

S. aureus enterotoxigenic strains are responsible for foodborne intoxication due to the production of heat-stable enterotoxins (3). Salmonella spp. is a leading cause foodborne infection (4,5). The abuse of antimicrobials in the veterinary field and the use of the same drugs for treatment of both humans and animals had resulted in development of antimicrobial resistant organi-sms. organisms may harbour some virulence attributes, which are positively contribute to the development of this multidrug resistance phenomenon (6). However, there is a clear lack of information about multidrug resistant foodborne pathogens in Egypt, in particular among strains isolated from meat products.

Therefore, this study was conducted to evaluate the microbiological quality (aerobic plate count (APC), total *S. aureus* count and most probable number (MPN) of coliforms) of meat products including minced meat, sausage and beef burger retailed in Egypt. Additionally, the prevalence of some foodborne organisms including *S. aureus* and *Salmonella spp.* was investigated. Furthermore, the multidrugresistance profiles of the identified strains were examined. Finally, the expression of drug resistance-related genes in the isolated organisms was detected using PCR assay.

Material and methods

Collection of samples

One hundred and fifty samples of fresh minced meat, smoked sausage and fresh beef burger (50 samples each) were randomly collected from butcher shops and stores in Zagazig city, Egypt. Samples were kept in an ice tank and then immediately transferred to Food Control Laboratory, Faculty of Veterinary Medicine, Zagazig University, Egypt for bacterial isolation and identification.

Preparation of samples, enumeration and isolation procedures

From each sample, 25g were aseptically homogenized in 225 ml of 1% sterile peptone water (Oxoid CM9) to make a dilution of 10⁻¹ and then serial dilutions were followed up to 10⁻⁷ dilution (7). For aerobic plate count, 1ml of each dilution was pipetted into separate duplicate petri dishes, and then overlaid by 12-15ml of nutrient agar (CM003, Oxoid, England), mixed well by alternate rotation and then let to solidify. Solidified petri dishes were inverted and incubated at 37°C for 24 h. All colony-forming units (pinpoint size) were counted (8).

For S. aureus, isolation and count were done on Baird Parker agar (Biolife, Italy) supplemented with egg yolk-tellurite emulsion (Himedia, India). After incubation at 37°C for 48 h, colonies (black, shiny, convex, 1–1.5 mm in diameter, and surrounded by a clear halo zone) and/or atypical colonies (black with no zones) presumptive colonies were counted and five colonies were selected and sub-cultured on blood agar plates (Difco Laboratories, Detroit, MI) and incubated for 24 h at 37°C (8). Gram's stain and biochemical tests were performed on suspected colonies identification of S. aureus (9). For the most probable number (MPN) of coliforms; 1ml of each dilution was inoculated separately into 3 MacConkey broth tubes with inverted Durham's tubes. Then, tubes were incubated at 37°C and examined after 24 and 48h. Positive tubes showing acid and gas productions in inverted Durham's tubes were recorded as MPN of coliforms (10).

Regarding *Salmonella* spp., original homogenate was pre-enriched in buffered peptone water 1% at 37°C for 24h. Then 1 ml of pre-enriched peptone water was enriched in Rappaport Vassiliadis broth with soya broth at 41.5°C. A loopful was streaked on XLD agar, incubated at 37°C for 24h and red colonies with black centre were enumerated (11). The obtained purified isolates were identified biochemically and serologically (12).

Genomic DNA extraction and PCR analysis

Genomic DNA extraction was done using QIAamp DNA kit according to the manufacturer's instructions. Primer sequences for identification of antibiotic resistance genes were described in Table 1. The target genes of *S. aureus* included *mec*A (encoded for methicillin-resistance) (13), *blaZ* (encoded for p-lactamase-resistance) (13) and *aac* (6') *aph* (2") (encoded for aminoglycoside-resistance) (13). For *Salmonella* spp., the targets genes were *bla*TEM (encoded for ampicillin-resistance) (14), *tet*A(A) (tetracycline

resistance gene) (15) and *flo*R (florfenicol/chloramphenicol resistance gene) (16). Uniplex PCR assays were carried out according to Darwish et al. (17). The thermal cycle of the reaction was started with a single 1 min cycle at 94°C, followed by 35 cycles of 10 sec denaturation at 94°C, 1 min annealing (annealing temperatures are indicated in Table 1) and 1 min extension at 72°C and then a final cycle of extension for 7 min was carried out at 72°C. The amplified products were then electrophoresed in 2% agarose gel and stained with ethidium bromide (18).

Table 1: Primers' sequences of the investigated drug resistance associated genes in *S. aureus* and *S.* Enteritidis isolated from different meat products

Gene	Primer sequence (5'-3')	Amplicon size (bp)	Annealing (°C)	Reference
mecA	F-GTAGAAATGACTGAACGTCCGATAA	310	50	(13)
	R-CCAATTCCACATTGTTTCGGTCTA A			
blaZ	F-ACTTCAACACCTGCTGCTTTC	173	54	(13)
	R-TGACCACTTTTATCAGCAACC			
aac(6')aph (2'')	F-GAAGTACGCAGAAGAGA	491	54	(13)
	R-ACATGGCAAGCTCTAGGA			
blaTEM	F-ATCAGCAATAAACCAGC	516	54	(14)
	R-CCCGAAGAACGTTTTC			
TetA(A)	F-GGTTCACTCGAACGACGTCA	576	50	(15)
	R-CTGTCCGACAAGTTGCATGA			
floR	F-TTTGGWCCGCTMTCRGAC	494	50	(16)
	R-SGAGAARAAGACGAAGAAG			

Antibiogram

Antibiotic sensitivity testing of *S. aureus* and *Salmonella spp.*, was performed using single diffusion assay against 11 commercially prepared antibiotic discs (6 mm) with variable concentrations (19).

Statistical analysis

Statistical significance was tested using One way analysis of variance (ANOVA) followed by Tukey-Kramer HSD test (JMP statistical package, SAS Institute Inc., Cary, NC, USA) (P < 0.05).

Results and discussion

The microbiological quality of meat products examined reflects the hygienic measures adopted during the preparation and post-processing handling of such products. In the present study, the results revealed the average aerobic plate counts (log₁₀ cfu/g) were

 5.44 ± 0.11 , 5.41 ± 0.08 and 4.07 ± 0.11 in the examined minced meat, beef burger and sausage, respectively (Table 2). Comparing the recorded values with the permissible limits set Organization ensured by Egypt Standardization (EOS) (20), it was clear that, 20%, 4% and 16% of minced meat, sausage, and beef burger, respectively exceeded that limits. S. aureus counts expressed as log₁₀ cfu/g was found to be; 3.45±0.20 in minced meat and 3.47±0.12 in beef burger that was significantly (p<0.05) higher than in sausage (2.31 ± 0.19) . Moreover, it was found that, 14, 12, and 20% of minced meat, sausage, and beef burger exceeded EOS recommendations (20). The Most Probable Number values (log₁₀ MPN/g) of coliforms were higher in minced meat (4.15±0.10), followed by beef burger (2.99 ± 0.12) and sausage (2.12 ± 0.12) that exceeded EOS limits by 50, 20 and 10%, respectively.

Table 2: Hygienic indicators in the examined meat product samples

	Minced meat	Sausage	Beef burger	
Aerobic plate count		-		
$Mean \pm SE$	5.44 ± 0.11^{a}	4.07 ± 0.11^{b}	$5.41{\pm}0.08^{a}$	
Range	4.45-6.85	4.00-6.18	4.30-6.60	
Exceed PL (%)	20%	4%	16%	
S. aureus count				
$Mean \pm SE$	3.45 ± 0.20^{a}	2.31 ± 0.19^{b}	3.47 ± 0.12^{a}	
Range	1.80-4.18	1.50-3.78	1.80-3.90	
Exceed PL (%)	14%	12%	20%	
MPN of coliforms				
$Mean \pm SE$	4.15 ± 0.10^{a}	2.12 ± 0.12^{c}	2.99 ± 0.12^{b}	
Range	3.00-5.30	1.00-3.15	1.00-4.15	
Exceed PL (%)	50%	10%	20%	

Means and ranges of the examined samples are expressed as log_{10} cfu/g in case of aerobic plate count and *S. aureus* counts and expressed as log_{10} MPN/g in most probable number count.

Means carrying different superscript letters within the same row were significantly different at p < 0.05.

SE: standard error of mean. PL: is the permissible limits of aerobic plate count (5 log₁₀ cfu/g); *S. aureus* count (2 log₁₀ cfu/g) and MPN of coliforms (3 log₁₀ MPN/g) according to Egyptian Organization for Standardization (EOS 2005).

Lower values of hygienic indicators were recorded in sausage compared to minced meat and beef burger that agreed with those recorded in Greece (21). This may be attributed to composition of sausage (minced meat packed in the intestine of animals). These intestines may be insufficiently cleaned, hence, lower the hygienic indicators.

In general, meat products had relatively high microbial contamination indicating inadequate measures adopted during manufacturing of such products. High contamination of meat products was reported in catering establishments in Hay Hassani district-Casablanca, Morocco (22). High microbial loads in the final products may arise from contamination of the contact surfaces of the meat products (23).

Meat products are responsible for a significant number of foodborne illnesses due to ingestion of foodborne pathogens such as *S. aureus* and *Salmonella spp. S. aureus* is considered one of the most important causes of food poisoning worldwide that is responsible for food borne intoxication due to the production of heat-stable enterotoxin.

In the current study, *S. aureus* was detected in 5(10%), 4(8%) and 5(10%) out of the examined minced meat, sausage and beef burger, respectively. This reflects unsatisfactory hygiene measures during handling and

processing of meat. Food handlers may be responsible for meat contamination by *S. aureus* as a result of cross contamination from their hands (3). *Salmonella spp.* is a natural inhabitant in the intestinal tract of animals and can contaminate animal carcasses via cross contamination by meat contact surfaces, meat handlers, low hygienic standards, inadequate storage, dust and insects (23). *Salmonella spp.* was isolated only from 2 beef burger samples (4%), the isolated strains were identified as *Salmonella Enteritidis*. Similarly, *S. aureus* and *Salmonella Enteritidis* were isolated from meat products in Greece, Morocco, Algeria and China (21,22,24,25).

Emergence of multidrug-resistance among foodborne pathogens had a worldwide concern due to its public health and economic impacts. For instances, United States Centre for Disease Control and Prevention (CDC) reported that more than two millions of US population is suffered annually from drug resistant organisms (26). In addition, this number was estimated to be 400000 in Europe (27). Development of drug resistance among foodborne pathogens is mainly due to the abuse of antibiotics in the veterinary field including improper use, lack of adherence to treatment guidelines, inadequate dosing and using of therapeutic agents as feed additives (28). Several pathogenic organisms had

evolved some genetic traits to resist antibiotics as an evolutionary protection; such organisms include *S. aureus* and *Salmonella* spp.

In the current investigation, *S. aureus* isolates showed multidrug resistance profiles for AMC, CTX, DA, E, G, ME and S as indicated in Table 3. All isolated strains harboured drug resistance-related virulence attributes including *mecA*, *blaZ* and *aac*(6')*aph*(2").

This result agreed with previous reports on *S. aureus* strains isolated from chicken meat and giblets and ready-to-eat meat products from Egypt and China (3,25). Globally, the proportions of multidrug resistant *S. aureus* especially for methicillin-resistant *S. aureus* (MRSA) combined with one or more antibiotics ranged from 20% to 80% in all WHO regions (29).

Table 3: Antibiotic susceptibility of the isolated 14 *S. aureus* and 2 *Salmonella* Enteritidis strains from meat products examined

		S. aureus			Salmonella Enteritidis		
	Disc concentration	S	I	R	S	I	R
Amoxicillin-clavulanic acid (AMC)	C) 30 μg	6	0	8	0	0	2
Amoxiciiiii-ciavuiaiiic aciu (AWC)		(42.9)	(0)	(57.1)	(0)	(0)	(100)
Cefotaxime (CTX)	30 μg	6	3	5	1	0	1
Cciotaxinic (C 1 X)		(42.9)	(21.4)	(35.7)	(50)	(0)	(50)
Chloramphenicol (C)	30 μg	13	0	1	0	0	2
emoramphemeor (e)		(92.9)	(0)	(7.1)	(0)	(0)	(100)
Ciprofloxacin (CIP)	5 μg	12	1	1	2	0	0
cipi offorucin (CII)		(85.7)	(7.1)	(7.1)	(100)	(0)	(0)
Clindamycin (DA)	2 μg	10	1	3	1	0	1
		(71.4)	(7.1)	(21.4)	(50)	(0)	(50)
Doxycycline (DO)	30 μg	13	0	1	0	0	2
Zonjejemie (Zo)		(92.9)	(0)	(7.1)	(0)	(0)	(100)
Erythromycin (E)	15 μg	11	0	3	1	0	1
()		(78.6)	(0)	(21.4)	(50)	(0)	(50)
Gentamicin (G)	10 μg	5	0	9	1	0	1
(3)		(35.7)	(0)	(64.3)	(50)	(0)	(50)
Methicillin (ME)	10 μg	0	0	14	0	0	2
, ,		(0)	(0)	(100)	(0)	(0)	(100)
Streptomycin (S)	10 μg	0	0	14	2	0	0
	- 178	(0)	(0)	(100)	(100)	(0)	(0)
Sulfamethoxazole-Trimethoprim	25 μg	13	0	1	2	0	0
(SXT)		(92.9)	(0)	(7.1)	(100)	(0)	(0)

The 14 *S. aureus* isolates were 5 from each of minced meat and beef burger and 4 from sausage. Values between brackets are the percentages of the isolates showed susceptibility (S), intermediate (I) or resistance (R) to the tested antimicrobials. mecA, blaZ and aac(6')aph(2") were detected in all *S. aureus isolates* (n=14).blaTEM, TetA(A) and florR were detected in the 2 *S.* Enteritidis isolates from beef burger.

All Salmonella Enteritidis strains were resistant to AMC, C, DO, and ME. However, only 50% were resistant to each of CTX, DA, E, and G, These strains harboured blaTEM, tetA(A) and floR associated resistance genes. Similarly, multidrug resistant Salmonella Spp. were isolated from red meat, poultry meat and processed meat products from Algeria and South Korea (24,29). Multidrug resistant Salmonella spp. is associated with invasive infections and increased risk of hospitalization and deaths. Recently, several studies have

shown a decreased susceptibility of *Salmonella spp*. to fluoroquinolones, drugs of choice for treatment of *Salmonella*-related gastrointestinal infections. According to WHO statistics (30), the resistance percentage of *Salmonella* to fluoroquinolones had been raised to reach 35% in Africa, 49% in Middle East and 50% in Europe. Therefore, it is highly recommended to reduce the abuse of antibiotics in veterinary field and to find alternatives to antibiotics to be used as feed additives.

Conclusions

The results of this study revealed improper hygienic measures adopted during processing of meat products marketed in Zagazig city, Egypt. Furthermore, some of these meat products were contaminated with *S. aureus* and *Salmonella* Enteritidis. The isolated strains showed multidrug resistance profile. Therefore, strict hygienic measures should be followed during processing of these meat products. In addition, strong legislations should be taken in order to produce meat products of high keeping qualities.

Acknowledgments

This study was supported in part by fund provided from Faculty of Veterinary Medicine, Zagazig University, Egypt. We would like to thank assistance provided from all staff members of Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Egypt, and Food Control Department, Animal Health Research Institute, Zagazig branch, Egypt. The results of this study are part from the Master thesis of Ms. Sahar M. Khalifa.

Conflict of interest

None of the authors have any conflict of interest to declare.

References

- 1. AL-Dughaym AM, Altabari. Safety and quality of some chicken meat products in Al-Ahsa Markets-Saudi Arabia. Saudi J Biol Sci 2010; 17: 37–42.
- 2. Borch E, Arinder P. Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci 2002; 62: 381–90.
- 3. Darwish WS, Atia, AS, Reda, LM, Elhelaly, AE, Thompson LA, Saad Eldin WF. Chicken giblets and wastewater samples as possible sources of methicillin-resistant Staphylococcus aureus: Prevalence, enterotoxin production, and antibiotic susceptibility. J Food Safety 2018; 38 (4): 12478.
- 4. Centre for Disease Control and Prevention (CDC). An Atlas of Salmonella in the United States, 1968-2011: Laboratory-based Enteric

- Disease Surveillance. Atlanta, Georgia: US Department of Health and Human Services, CDC. 2013.
- 5. El Bayomi RM, Darwish WS, Amany M. Abd El-Moaty AM, Gad TM. Prevalence, antibiogram, molecular characterization and reduction trial of Salmonella typhimurium isolated from different fish species. Jap J Vet Res 2016; 64 (2): S181–86.
- 6. Darwish WS, Eldaly E, El-Abbasy M, Ikenaka Y. Ishizuka M. Antibiotic residues in food: African scenario. Jap J Vet Res 2013; 61: S13–22.
- 7. American Public Health Association (APHA). Compendium of methods for the microbiological examination of food, 4th Ed., Washington, 2001.
- 8. Food and Drug Administration (FDA). Bacteriological analytical manual. Microbiological methods for cosmetics, (Chapter 23), 2001.
- 9. Quinn PJ, Markey BK, Leonard FC, Fitzpatrick ES, Fanning S, Hartigan P. Veterinary microbiology and microbial disease, 2nd ed. Oxford: Wiley Blackwell, 2011.
- 10. Kok T, Worswich D, Gowans E. Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee, J., A. Fraser, B. Marmion and A. Simmons). 14th ed., Edinburgh, Churchill Livingstone, UK, 1996.
- 11. International Standards Organization (ISO 6579).General guidance on methods for the detection of Salmonella, Geneva, Switzerland, 2002.
- 12. Kauffman G. Kauffmann white scheme. J Acta Path Microbiol Sci 1974; 61: 38.
- 13. Zhang K, Sparling J, Chow BL, Elsayed S, Hussain Z, Church DL, Gregson DB, Louie TC. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. JMJ Clin Microbiol. 2004; 42 (11): 4947–55.
- 14. Colom K, Pèrez J, Alonso R, Fernández-Aranguiz A, Lariňo E, Cisterna R. Simple and reliable multiplex PCR assay for detection of blaTEM, blaSHV and blaOXA-1 genes in Enterobacteriaceae. FEMS Microbiol Letters 2003; 223: 147–51.
- 15. Randall LP, Cooles SW, Osborn MK, Piddock LJV, Woodward MJ. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella

- Enterica isolated from humans and animals in the UK. J Antimicrobial Chemotherapy 2004; 53: 208–16.
- 16. Arcangioli MA, Leroy-Se'trin S, Martel JL, Chaslus-Dancla E. A new chloramphenicol and florfenicol resistance gene flanked by two integron structures in Salmonella typhimurium DT104. FEMS Microbiol. Lett 1999; 174: 327–32.
- 17. Darwish WS, Saad Eldin WF, Eldesoky KI. Prevalence, Molecular Characterization and Antibiotic susceptibility of Escherichia coli isolated from duck meat and giblets. J Food Safety 2015; 35 (3): 410–15.
- 18. Singh A, Yadav S, Singh S, Bharti P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res Int J 2010; 43: 2027–30.
- 19. National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility testing. Supplement M100-S11. Villanova, PA, USA, 2001.
- 20. Egyptian Organization for Standardization and Quality (EOS). Egyptian standards for requirements of luncheon No: 1114. 2005.
- 21. Gounadaki AS, Skandamis PN, Drosinos EH, Nychas GJ. Microbial ecology of food contact surfaces and products of small-scale facilities producing traditional sausages. Food Microbiol 2008; 25 (2): 313–23.
- 22. Kadmiri NE, Bakouri H, Bassir F, Barmaki S, Rachad L, Nadifi S, Kadmiri OE, Amina B. Food hygiene assessment in catering establishments in Hay Hassani district-Casablanca. Pan Afr Med J 2016; 24: 335.

- 23. Durmaz H, Aygun O, Sancak H. The microbiological quality of grilled meats (Kebab) and salads consumed in Sanliurfa restaurants. Int J Sci Technol Res 2015; 1: (1): 297–302.
- 24. Mezali L, Hamdi TM. Prevalence and antimicrobial resistance of Salmonella isolated from meat and meat products in Algiers (Algeria). Foodborne Pathog Dis. 2012; 9 (6): 522–9.
- 25. Xing X, Li G, Zhang W, Wang X, Xia X, Yang B, Meng J. Prevalence, antimicrobial susceptibility, and enterotoxin gene detection of Staphylococcus aureus isolates in ready-to-eat foods in Shaanxi, People's Republic of China. J Food Prot 2014; 77 (2): 331–4.
- 26. Centres for Disease Control and Prevention, US Department of Health and Human Services. Antibiotic resistance threats in the United States. Atlanta: CDC; 2013. Available from: http://www.cdc.gov/drugresistance/pdf/arthreats-2013-508.pdf
- 27. ECDC/EMEA The bacterial challenge: time to react. Stockholm: European Centre for Disease Prevention and Control; 2009.
- 28. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 2015; 109 (7): 309–18.
- 29. Hyeon JY, Chon JW, Hwang IG, Kwak HS, Kim MS, Kim SK, Choi IS, Song CS, Park C, Seo KH. Prevalence, antibiotic resistance, and molecular characterization of Salmonella serovars in retailment products. J Food Prot 2011; 74 (1): 161–6.
- 30. World Health Organization Antimicrobial resistance: global report on surveillance 2014. Geneva, Switzerland: WHO; 2014.