Aeromonas hydrophila IN FISH AND HUMANS; PREVALENCE, VIRULOTYPING AND ANTIMICROBIAL RESISTANCE

Heba A. Ahmed1*, Mohamed E.M. Mohamed1, Maha M. Rezk1,2, Rasha M. A. Gharieb1, Shehata A. Abdel-Maksoud2

1Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, 44511, Sharkia Governorate, 2Animal Health Research Institute, Damietta branch, Agriculture Researches Center, Egypt

*Corresponding author, E-mail: heba_ahmed@zu.edu.eg

Abstract: This work aimed to investigate the virulence factors and antibiotic resistance of A. hydrophila isolated from different sources in Damietta Governorate, Egypt. The samples comprised of tilapia (Oreochromis niloticus, n=150), mugil (Mugil cephalus, n=144), human stool (n=102) and fish sellers hand swabs (n=85). A total of 25 A. hydrophila isolates were recovered and molecularly confirmed, of which, 2.7% were from tilapia muscles, 2% from tilapia viscera, 6.3% from mugil viscera and 8.8% from stool samples. No isolates were recovered from mugil muscles and hand swabs. Phenotypic determination of haemolysis, lipolysis, proteolysis and gelatinase activity revealed that 60%, 56%, 60% and 100% were positive, respectively. Molecular identification of haemolysin (hly), aerolysin (aer), lipase (lip) and cytotoxic enterotoxins (act) virulence associated genes showed that 28%, 68%, 28% and 16% of the examined isolates were positive, respectively. Antimicrobial susceptibility of the isolates to 17 antibiotics was determined, the most resistance pattern was observed for cefixime (88%), while, all of the isolates were susceptible to imipenem. This study revealed that A. hydrophila isolated from fish and humans showed several virulence factors and exhibit a wide range of antibiotic resistance which is considered a public health hazard as well as.

Key words: Aeromonas hydrophila; virulence; vntibiotic resistance; fish

Introduction

Fish production is one of the most important industrial activities in Egypt (1). Damietta is a littoral governorate with an important role in fish production. However, infection of fish with microbial pathogens is considered a risk factor in aquaculture industry resulting in loss of millions of dollars annually (2). Aeromonas infection in fish causes world economic problems because of the high number of fish mortalities particularly in China and India (2). Fish can be bacteriologically contaminated either by polluted water or by handling, processing and unhygienic storage conditions (3). Aeromoniasis is a zoonotic disease caused by different species of Aeromonas, the disease occurs due to consumption of contaminated fish, sea foods and drinking water, or direct contact with recreational waters (4). This zoonotic pathogen belongs to family Aeromonadaceae, it is a facultative anaerobic, non-spor forming Gram-negative bacterium, motile, bacilli or coccobacilli (5,6). A.
Material and methods

This study was conducted in Damietta governorate, Egypt, and was approved by the Committee of Animal Welfare and Research Ethics Faculty of Veterinary Medicine, Zagazig University, Egypt.

Samples

A total of 294 fish samples comprised 150 tilapia (*Oreochromis niloticus*) and 144 mugil (*Mugil cephalus*) were collected from marketed fish in Damietta Governorate, Egypt. Fish samples were collected in sterilized polyethylene bags and transferred to the lab. Viscera and muscles were sampled separately from each individual fish under complete aseptic conditions; samples were collected from each fish after sterilization of the surface by hot spatula according to the international commissions on microbiological specifications for foods (21).

Human samples; 102 stool and 85 hand swabs were collected and directly immersed in sterile alkaline peptone water (APW, Oxoid CM1028). Stool samples were collected from Endemic Diseases Hospital, while, hand swabs were collected from fish sellers. For each collected sample, demographic data (name, sex, age, occupation, residence) were reported.

Isolation and identification

Each sample (fish viscera, fish muscles, human stool and hand swabs) were pre-
enriched in APW at 37°C for 24 h, then a loopful of the incubated broth was plated onto Aeromonas agar (LAB 167) and the plates were incubated at 37°C for 24 h under aerobic conditions. Suspected colonies were purified by plating on nutrient agar plates and were then subjected to biochemical identification according to Bergey’s Manual of Determinative Bacteriology (22). The colonies were examined for morphological characterizations such as shape, Gram stain and motility test. Biochemical characterization was carried out using oxidase, triple sugar iron, pigment formation, esculin hydrolysis, growth at 42°C and 4°C, arginine hydrolysis, indole production, Methyl Red, Voges-Proskauer, citrate utilization, urease, hydrogen sulphide production, nitrate reduction, gelatin liquefaction, ornithine decarboxylase, oxidation-fermentation, L-lysine decarboxylase, arginine decarboxylase, β-galactosidase (ONPG), salt tolerance and sugar fermentation (23).

Molecular identification

The extraction of DNA was done by QIAamp DNA Mini kit instructions (Qiagen, Germany, GmbH, Catalog no. 51304) with some modifications. Briefly, 200 µl of the sample suspension was incubated at 56ºC for 10 min after addition of 10 µl of proteinase K and 200 µl of lysis buffer. Then, 200 µl of 100% ethanol were added to the lysate. Washing and centrifugation of the sample were performed following the manufacturer’s recommendations. Then, nucleic acid was eluted with 100 µl of elution buffer provided in the kit.

The reaction contained 25 µl of the following PCR master mix: 12.5 µl of Emerald Amp GT PCR mastermix (2x premix), 4.5 µl PCR grade water, 1 µl forward primer (20 pmol), 1 µl reverse primer (20 pmol), 6 µl template DNA. The amplification of 16S rRNA gene for Aeromonas genus was performed using primer pair AerF/AerR: 5’-CTA CTT TTG CCG GCG AGC GG-3 and 5’-TGA TTC CCG AAG GCA CTC CC-3 amplifying 953 bp (24). The confirmed Aeromonas isolates were subjected to PCR for the identification of A. hydrophila using the primer pair AH1/AH2; 5’-GAA AGG TTG ATG CCT AAT ACG TA-3 and 5’-CGT GCT GGC AAC AAA GGA CAG-3 of the 16S rRNA gene producing a product of 625 bp (24). The used primers were supplied from Metabion (Germany). The amplification cycles (n=35) were performed under the following conditions; 5 min of primary denaturation at 94°C, secondary denaturation for 30 sec at 94°C, annealing for 40 sec at 50°C and extension at 72°C for 45 sec in the second pair. The amplified products were resolved by electrophoresis in 1.5% agarose gel (Applichem, Germany, GmbH). The sizes of the amplified product were determined by a gene ruler 1 Kb plus DNA Ladder (Fermentas, Thermo Scientific, Germany). Photographing was done by gel documentation system (Alpha Innotech, Biomedia) and analysis was performed using computer software.

Phenotypic characterization of A. hydrophila virulence determinants

Virulence determinants including haemolysis, lipase activity, protease activity and gelatin liquefaction of A. hydrophila isolates (n=25) were evaluated. Haemolysis activity was tested using blood agar plate containing 5% sheep red blood cells (Eiken, Japan) at 37°C. The haemolysis was examined after 24 h according to Singh and Sanyal (25). The lipase activity was screened by white zones appearance in a selective media based on the hydrolysis of Tween 80 containing (g/l): pepton, 10; NaCl, 5; CaCl2.2H2O, 0.1; agar agar, 20 and Tween 80, 10 ml v/v (26). Caseinase production capacity was assayed by growing the cultures on LB (HIMEDIA, M575) medium supplemented with 1% of skim milk at 35°C for 24 h (27). Clear halo production indicated positive reaction. Gelatinase production was determined using Luria-Bertani agar Miller (HIMEDIA, M1151) containing gelatin (30 g/L), cultivation was done at 30°C overnight and cooled for 5 h at 4°C. Positive reaction was described by the appearance of a turbid halo zone around the streaked colonies (28).
Molecular characterization of putative virulence genes

Primer pair used for hly gene amplification was 5'-CTA TGA AAA AAC TAA AAA TAA CTG-3' and 5'-CAG TAT AAG TGG GGA AAT GGA AAG-3' (29). The amplification conditions were 5 min of primary denaturation at 94°C, secondary denaturation for 30 sec at 94°C, annealing 1 min at 55°C, extension at 72°C for 1.5 min and final extension at 72°C for 12 min. In case of aero gene, the primer pair used was 5'-CAC AGC CAA TAT GTC GGT GAA G-3' and 5'-GTC ACC TTC TCG CTC AGG C-3' (30). The conditions were primary denaturation at 94°C for 5 min, secondary denaturation for 30 sec at 94°C, annealing for 40 sec at 52°C, extension at 72°C for 40 sec and final extension at 72°C for 10 min. Moreover, the primers used for act gene were 5'-AGG TGA CCA CCA CCA AGA ACA-3' and 5'-AAC TGA CAT CGG CCT TGA ACT C-3' (31), the conditions of the amplification were primary denaturation at 94°C for 5 min, secondary denaturation for 30 sec at 94°C, annealing 30 sec at 55°C, extension at 72°C for 30 sec and final extension at 72°C for 7 min. Lip gene was amplified using the primers 5'-ATC TTC TCC GAC TGG TTC GG-3' and 5'-CCG TGC CAG GAC TGG GTC TT-3' as described by Sen and Rodgers (32). The reaction conditions were primary denaturation at 94°C for 5 min, secondary denaturation for 30 sec at 94°C, annealing 40 sec at 55°C, extension at 72°C for 40 sec and final extension at 72°C for 10 min. Visualization of the products was carried out as described previously.

Antibiogram analysis

A. hydrophila strains were subjected to antibiotic sensitivity testing using Kirby-Bauer disc diffusion method according to the National Committee for Clinical Laboratory Standards (NCCLS) instructions. A. hydrophila isolates were inoculated in TSB and incubated at 35°C for 16-20 h, turbid broth was inoculated in Muller Hinton broth (Oxoid, CM0405), the turbidity was adjusted according to McFarland obesity tube No. 0.5. Isolates were streaked on Muller Hinton agar (Oxoid, CM0337) and disks were placed, incubation was done at 37°C overnight. The used antibiotics were Amoxicillin (AML, 25 µg), Amoxicillin-Clavulanic acid (AMC, 30 µg), Ceftriaxone (CRO, 30 µg), Cephotaxime (CTX, 30 µg), Ceftazidime (CAZ, 30 µg), Cefixime (CFM, 5 µg), Imipenem (IPM, 10 µg), Gentamicin (CN, 10 µg), Tobramycin (TOB, 10 µg), Kanamycin (K, 30 µg), Streptomycin (S, 10 µg), Tetracycline (TE, 30 µg), Ciprofloxacin (CIP, 5 µg), Norfloxacin (NOR, 10 µg), Nalidixic acid (NA, 30 µg), Trimethoprim-Sulfamethoxazole (SXT, 25 µg) and Chloramphenicol (C, 30 µg). Choosing antimicrobials was according to the importance and common use in preventing and treating diseases in both fish farms and human clinics. Interpretation was done according to the followings: Amoxicillin/ Clavulanic acid, Ceftriaxone, Cefotaxime, Ceftazidime, Imipenem, Gentamicin, Tetracycline and Chloramphenicol were interpreted according to Clinical and Laboratory Standards Institute (CLSI) guidelines (33). Ciprofloxacin was according to The European Committee on Antimicrobial Susceptibility Testing (34). Streptomycin was interpreted according to CLSI (35). In case of Cefixime, Tobramycin, Norfloxacin and Nalidixic acid, the interpretation relied on French Society of Microbiology (36). The interpretation of Trimethoprim/ Sulfamethoxazole was based on the French Society of Microbiology (37). Moreover, Amoxicillin and Kanamycin assessment was according to Comite de l’Antibiogramme de la Societe Francaise de Microbiologie (38). Multiple antibiotic resistances (MAR) index was evaluated according to the equation described by Krumperman (39). Multidrug resistance (MDR) was defined as resistance of an isolate to at least one agent in three or more antibiotic classes (40).

Results

A total of 481 samples collected from Damietta governorate, Egypt, were examined for A. hydrophila contamination. Table 1 illustrates that a total of 34 (7.1%) isolates were identified by morphological and biochemical examination. These isolates were confirmed as Aeromonas spp. by PCR (Figure 1A).
Molecular amplification of *A. hydrophila* specific 16S rRNA gene revealed that 25 (5.2%) were positive as shown in Figure (1B).

In case of *Orechromis niloticus*, 7 (4.7%) isolates were recovered; 4 (2.7%) from muscles and 3 (2%) from viscera. Meanwhile, *Mugil cephalus* showed 6.3% isolation rate from viscera. In case of human samples, 9 (8.8%) isolates were recovered from stool samples, while hand swabs revealed no *A. hydrophila* contamination.

The phenotypic examination of putative virulence factors revealed that all the 25 isolates (100%) tested positive for gelatin liquefaction test, while 15, 14 and 15 isolates were positive for hemolysis on blood agar, lipase and protease activity with the respective percentages; 60, 56 and 60%.

The analysis of gene profiles based on the presence of 4 virulence-associated genes (*hly*, *lip*, *aer* and *act*) among clinical and environmental *A. hydrophila* isolates revealed that 7 (28%); 7 (28%); 17 (68%) and 4 (16%) of the isolates were positive for the aforementioned genes, respectively (Figure 1C, 1D, Figure 2A and 2B).

The antibiotic susceptibility assay (Tables 2 and 3) performed on 25 confirmed *A. hydrophila* isolates illustrated that all the isolates were susceptible to imipenem. However, the resistance pattern varied among the other tested drugs; the highest resistance was recorded against cefixime with the proportion of 88% followed by amoxicillin/clavulanic acid and ceftazidime (80%). The lowest resistance (40%) was against gentamycin, streptomycin, norfloxacin and chloramphenicol. Multiple drug resistance was observed in *A. hydrophila* isolates, out of 25 isolates, four isolates were resistant to 2, 5, 12 and 13 drugs (one isolate, each). Moreover, 6 isolates were resistant to 8, 9 and 10 drugs (two isolates, each), 3 isolates were resistant to 6 drugs, 5 isolates were resistant to 4 drugs and 7 isolates were resistant to 15 drugs. The MAR average was 0.489.

Table 1: Occurrence of *A. hydrophila* and virulence factors in the examined samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of bacterial-molecularly confirmed A. hydrophila (%)</th>
<th>No. of hly gene</th>
<th>No. of lip gene</th>
<th>No. of aer gene</th>
<th>No. of act gene</th>
<th>Haemolysis</th>
<th>Lipase activity</th>
<th>Protease</th>
<th>Gelatinase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilapia (n=150)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscles</td>
<td>5 (3.3%)</td>
<td>4 (2.7%)</td>
<td>0 (0%)</td>
<td>3 (2%)</td>
<td>0 (0%)</td>
<td>3 (2%)</td>
<td>2 (1%)</td>
<td>3 (2%)</td>
<td>4 (2.7%)</td>
</tr>
<tr>
<td>Viscera</td>
<td>5 (3.3%)</td>
<td>3 (2%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>3 (2%)</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>2 (2%)</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Mugil (n=144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscles</td>
<td>1 (0.7%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Viscera</td>
<td>13 (9%)</td>
<td>9 (6.3%)</td>
<td>2 (1%)</td>
<td>5 (3%)</td>
<td>3 (2%)</td>
<td>3 (2%)</td>
<td>3 (2%)</td>
<td>2 (2%)</td>
<td>9 (6.3%)</td>
</tr>
<tr>
<td>Fish Sellers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hand Swabs</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Patients (n=102)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stool</td>
<td>10 (9.8%)</td>
<td>9 (8.8%)</td>
<td>7 (7%)</td>
<td>2 (2%)</td>
<td>9 (9%)</td>
<td>0 (0%)</td>
<td>8 (8%)</td>
<td>7 (7%)</td>
<td>8 (8%)</td>
</tr>
<tr>
<td>Total</td>
<td>481 (5.2%)</td>
<td>25 (28%)</td>
<td>7 (7%)</td>
<td>17 (17%)</td>
<td>4 (4%)</td>
<td>15 (15%)</td>
<td>14 (14%)</td>
<td>15 (15%)</td>
<td>25 (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials (abbreviation)</th>
<th>R</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin (AML 25)</td>
<td>17 (68%)</td>
<td>2 (8%)</td>
<td>6 (24%)</td>
</tr>
<tr>
<td>Amoxicillin/clavulanic acid (AMC 30)</td>
<td>20 (80%)</td>
<td>1 (4%)</td>
<td>4 (16%)</td>
</tr>
<tr>
<td>Ceftriaxone (CRO 30)</td>
<td>11 (44%)</td>
<td>3 (12%)</td>
<td>11 (44%)</td>
</tr>
<tr>
<td>Cefotaxime (CTX 30)</td>
<td>14 (56%)</td>
<td>4 (16%)</td>
<td>7 (28%)</td>
</tr>
<tr>
<td>Ceftazidime (CAZ 30)</td>
<td>20 (80%)</td>
<td>-</td>
<td>5 (20%)</td>
</tr>
<tr>
<td>Cefixime (CFM 5)</td>
<td>22 (88%)</td>
<td>-</td>
<td>3 (12%)</td>
</tr>
<tr>
<td>Imipenem (IPM 10)</td>
<td>-</td>
<td>-</td>
<td>25 (100%)</td>
</tr>
<tr>
<td>Gentamycin (CN 10)</td>
<td>10 (40%)</td>
<td>1 (4%)</td>
<td>14 (56%)</td>
</tr>
<tr>
<td>Tobramycin (TOB 10)</td>
<td>11 (44%)</td>
<td>4 (16%)</td>
<td>10 (40%)</td>
</tr>
<tr>
<td>Kanamycin (K 30)</td>
<td>14 (56%)</td>
<td>1 (4%)</td>
<td>10 (40%)</td>
</tr>
<tr>
<td>Streptomycin (S 10)</td>
<td>10 (40%)</td>
<td>4 (16%)</td>
<td>11 (44%)</td>
</tr>
<tr>
<td>Tetracycline (TE 30)</td>
<td>18 (72%)</td>
<td>1 (4%)</td>
<td>6 (24%)</td>
</tr>
<tr>
<td>Ciprofloxacin (CIP 5)</td>
<td>12 (48%)</td>
<td>1 (4%)</td>
<td>12 (48%)</td>
</tr>
<tr>
<td>Norfloxacin (NOR 10)</td>
<td>10 (40%)</td>
<td>5 (20%)</td>
<td>10 (40%)</td>
</tr>
<tr>
<td>Nalidixic acid (NA 30)</td>
<td>19 (76%)</td>
<td>-</td>
<td>6 (24%)</td>
</tr>
<tr>
<td>Trimethoprim/sulphamethoxazole (SXT 25)</td>
<td>11 (44%)</td>
<td>-</td>
<td>14 (56%)</td>
</tr>
<tr>
<td>Chloramphenicol (C 30)</td>
<td>10 (40%)</td>
<td>4 (16%)</td>
<td>11 (44%)</td>
</tr>
</tbody>
</table>

*R: resistant, I: intermediate, S: sensitive. CIP: Ciprofloxacin; CFM: Cefixime; S: Streptomycin; TOB: Tobramycin; IPM: Imipenem; CN: Gentamycin; NOR:Norfloxacin; AML: Amoxicillin; SXT: Trimethoprim-sulphamethoxazole; C: Chloramphenicol; TE: Tetracycline; CRO: Ceftriaxone; CTX: Cefotaxime; K: Kanamycin; NA: Nalidixic acid; CAZ: Ceftazidime and AMC: Amoxicillin-clavulanic acid.

Table 3: Frequency distribution of multidrug resistant *Aeromonas hydrophila* isolates

<table>
<thead>
<tr>
<th>Resistance pattern</th>
<th>No. of Aeromonas hydrophila isolates</th>
<th>Percentage of Aeromonas hydrophila isolates</th>
<th>MAR index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant antibiotics to 2</td>
<td>1</td>
<td>4%</td>
<td>0.11</td>
</tr>
<tr>
<td>Resistant antibiotics to 4</td>
<td>5</td>
<td>20%</td>
<td>0.23</td>
</tr>
<tr>
<td>Resistant antibiotics to 5</td>
<td>1</td>
<td>4%</td>
<td>0.29</td>
</tr>
<tr>
<td>Resistant antibiotics to 6</td>
<td>3</td>
<td>12%</td>
<td>0.35</td>
</tr>
<tr>
<td>Resistant antibiotics to 8</td>
<td>2</td>
<td>8%</td>
<td>0.47</td>
</tr>
<tr>
<td>Resistant antibiotics to 9</td>
<td>2</td>
<td>8%</td>
<td>0.52</td>
</tr>
<tr>
<td>Resistant antibiotics to 10</td>
<td>2</td>
<td>8%</td>
<td>0.58</td>
</tr>
<tr>
<td>Resistant antibiotics to 12</td>
<td>1</td>
<td>4%</td>
<td>0.70</td>
</tr>
<tr>
<td>Resistant antibiotics to 13</td>
<td>1</td>
<td>4%</td>
<td>0.76</td>
</tr>
<tr>
<td>Resistant antibiotics to 15</td>
<td>7</td>
<td>28%</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Average MAR= 0.489.
Aeromonas hydrophila in fish and humans: prevalence, virulotyping and antimicrobial resistance

Figure 2: A: Examplar of agarose gel electrophoresis of act gene amplification of Aeromonas hydrophila isolates. L: 100 bp ladder. Lanes (1-5, 9, 11): negative samples. Lanes (6-8, 10): positive samples. Lane Pos: positive control and lane Neg: negative control. B: Examplar of agarose gel electrophoresis of lip gene amplification of Aeromonas hydrophila isolates. L: 100 bp ladder. Lanes (17, 28 and 30): positive samples. Lanes (12, 15, 16, 18, 21, 22, 29, 31-34): negative samples. Lane Pos: positive control and lane Neg: negative control
Discussion

A. hydrophila has gained increased attention due to pathogenicity to humans and the ubiquity of the organism in the environment, food, and water (41). In this study, the prevalence of *A. hydrophila* in tilapia, mugil, stool, and hand swabs was investigated. *A. hydrophila* was isolated from 2.7% tilapia muscles, 2% tilapia viscera, 6.3% mugil viscera indicating that fish in retail in the study area are considered potential source for infection of human consumers.

Ibrahim et al. (42) recorded a prevalence of 3.1% of *A. hydrophila* from the viscera of tilapia in Giza and Sharkia, Egypt. Meanwhile, Ashiru et al. (43) failed to isolate the bacteria from tilapia viscera in Nigeria. Furthermore, tilapia muscles showed isolation rate of 2.7% in our study, this is higher than the results recorded by Castro-Escarpulli et al. (44) who surveyed 250 frozen tilapia samples and reported an isolation rate of 0.8% in Mexico City. Ibrahim et al. (45) reported a higher isolation rate (46.6%) of *A. hydrophila* in fresh tilapia flesh and 53.3% in fresh mugil flesh. Moreover, Ramadan et al. (46) revealed that *Mugil cephalus* rate of infection with *A. hydrophila* was 37% in flesh. This was inconsistent with our study, the inability to isolate the organism from mugil flesh could be attributable to that *Aeromonas* organism is part of intestinal microbiota of either normal or diseased fish and the organism can transport to muscle under stress condition and in case of decrease fish immune state (47), moreover, the difference in individual fish susceptibility is a cause of concern.

The present study showed that *A. hydrophila* was isolated with the percentage of 8.8% from human stool samples, this is nearly similar to the results obtained by Subashkumar et al. (48) who isolated *A. hydrophila* from diarrheic patient stool samples with a rate of 9.7% in Coimbatore, South India. On the other hand, Borchardt et al. (9) reported a lower occurrence of *Aeromonas* species (0.7%) in stool samples in Wisconsin, USA. While, higher isolation rates of 85.7% in the hospitals of India (49) and 18.8% in Sharkia Governorate, Egypt were reported (10). Gastroenteritis caused by *A. hydrophila* is self-limiting watery diarrhea; however, in children and immunocompromised patients, the disease is more serious (48).

None of the hand swab samples were contaminated with *A. hydrophila* in our study. This might be either because the hand is not suitable for the presence of *A. hydrophila* or due to the traditional habit of fish sellers to frequently wash their hands with water which lead to elimination of *A. hydrophila*. In accordance, another study in Egypt reported that none of the hand swabs from fish handlers were positive (50).

The pathogenesis of *A. hydrophila* is correlated to different factors such as extracellular enzymes, slime production and siderophores (6). *A. hydrophila* can cause cytolytic effect on erythrocytes; this hemolytic activity is a type of enteropathogenicity and may result in diarrhea outbreaks (51). Only 60% of our isolates showed hemolytic activity on blood agar plates. This was lower than other studies that reported high proportions ranging from 72%-95% of *A. hydrophila* isolates with hemolytic activity (42,48,52,53). Meanwhile, Castro-Escarpulli et al. (44) revealed that all the isolates tested positive for hemolytic activity.

Lipase activity is another virulence factor which enables *A. hydrophila* to affect the function of the immune system by interaction with human leukocytes (54). Lipase can alter cytoplasmic membrane structure of the host cells and facilitate pathogenicity, the presence of aerolysin gene alleviate this process (31). The lipase activity was observed in 56% of the recovered isolates, while Bhowmik et al. (52) reported a higher prevalence (80.8%). Castro-Escarpulli et al. (44) and Simon et al. (53) reported the lipase activity in 100% of the *A. hydrophila* isolates.

The protease activity has an important role in the pathogenesis of *A. hydrophila* due to the ability of tissue damage and infection establishment by overcoming the host defense (54). Only 60% of our isolates showed protease activity, this is higher than Castro-Escarpulli et al. (44) who reported protease activity in 50% of the isolates, while, Bhowmik et al. (52)
documented 65.4%. Subashkumar et al. (48) reported the protease activity in all the tested isolates (100%). Gelatin liquefaction was observed in 100% of our isolates. This was similar to a study that reported gelatinase activity in 100% of the examined isolates (44).

Aeromonads may express cytotoxic enterotoxins (act), which inhibits the phagocytic ability of phagocytes; aerolysin proteins which exhibit enterotoxic properties and hemolysins (hlyA) which are enterotoxigenic hemolysins (41,54). The haemolysin gene was identified in our study with the percentage of 28%; this is lower than the detection rate of the hly gene in different studies with the range from 30-100% (4,10,44,46,52,53).

The aerolysin gene was detected in 68% of the isolates. This is lower than detection rates ranged from 70-100% in different studies (44,46,53,55). While, Tahoun et al. (10) and Yogananth et al. (4) reported lower rates of 66.7% and 50%, respectively.

The detection rate of the lipase gene was 28% in our study. This result is lower than that reported by Younes et al. (56) who reported that 81.8% of Aeromonas hydrophila strains isolated from Oreochromis niloticus were positive for lipase gene, while, Simon et al. (53) and Castro-Escarpulli et al. (44) reported the gene in all the examined A. hydrophila isolates.

The act gene is responsible for enterotoxigenicity of Aeromonas, 16% of our isolates harbored the gene. This was inconsistent with other studies with higher detection rate of the gene ranging from 23-94% (46,52,53,55,56). The difference in the frequencies of the virulence associated genes between the studies could be attributed to variation in the origin of the samples.

Antibiotic susceptibility profile against 17 antibiotics was performed on 25 A. hydrophila isolates. In the present work, 100% of the isolates were susceptible to imipenem. This result is inconsistent with Castro-Escarpulli et al. (44) who reported a resistance of 50% to this drug. The most resistance pattern was recorded against cefixime (88%), followed by amoxicillin/clavulanic acid and ceftazidime (80%). Ramadan et al. (46) reported a resistance of 56% to ceftazidime. The examined isolates showed high resistance rates to both nalidixic acid and tetracycline (76% and 72%, respectively). Tetracycline and nalidixic acid resistance rates of 37.5%, each, were reported by Sarder et al. (57), while 100% of A. hydrophila isolates were susceptible to both tetracycline and nalidixic acid as described by Topic Popovic et al. (58) and Castro-Escarpulli et al. (44), respectively. In contrary, Ashiru et al. (43) reported 100% resistance to tetracycline.

Resistance to ceftriaxone, tobramycin and trimethoprim/sulphamethoxazole was 44%, each. Castro-Escarpulli et al. (44) documented 50% resistance against trimethoprim/ sulphamethoxazole, while, Topic Popovic et al. (58) reported 100% susceptibility to the drug.

The resistance of the isolates to cefotaxime and kanamycin was 56%, this is higher than the results of Ramadan et al. (46) who reported 40% and 6% resistance against the two drugs, respectively. Castro-Escarpulli et al. (44) observed 100% susceptibility of A. hydrophila isolates to both antibiotics, while, Sarder et al. (57) reported 87.5% susceptibility to kanamycin.

Ciprofloxacin was reported as the most active drug against Aeromonas infection (41,59,60). Our isolates showed resistance to ciprofloxacin with the percentage of 48%, this is inconsistent with other studies that reported 100% susceptibility to ciprofloxacin (43,44, 61). Moreover, Sarder et al. (57) recorded a lower resistance rate (6.3%) of the isolates to the drug.

The lowest resistance in our study was reported to chloramphenicol, norfloxacin, streptomycin and gentamicin with the percentage of 40, each. Sensitivity of A. hydrophila (100%) to chloramphenicol was reported in different studies (44,53,55). In addition, 100% susceptibility of A. hydrophila isolates to norfloxacin was reported by Ye et al. (55).

Our isolates expressed 40% resistance to streptomycin this was comparable to 30 and 25% resistance reported by Ramadan et al. (46) and Sarder et al. (57), respectively. While, Ye et al. (55) and Simon et al. (53) reported 100% sensitivity to streptomycin.
The indiscriminate use of antibiotics for therapy in humans and animals and as growth promoters in animal and fish industry resulted in increased resistance and consequently, resistant organisms which can be transmitted to humans and other animals through many routes like food consumption and water contact even contaminated soil, livestock and pets could be considered as sources of resistance transfer (17,19,62).

The multiple antibiotic resistance (MAR) pattern of A. hydrophila was calculated and it ranged from 0.11 to 0.88. Krumperman (39) reported that MAR index of more than 0.2 is an evidence of high risk source contamination. Odeyemi and Ahmad (19) reported MAR index range of 0.25: 0.68 in different Aeromonas spp isolated from different aquatic sources.

Conclusion

In this study, A. hydrophila was isolated from different environmental and clinical samples. Isolation of A. hydrophila from fish flesh posed a zoonotic concern to public health. The observed MDR is resulted from the indiscriminate use of antibiotics either in fish farms or in diarrhea treatment. Therefore, a good disease management and control strategy is recommended for both fish farms and treatment assay to deal with antibiotic usage. Further studies are needed on the genetic relatedness among isolates from different sources and the virulence factors of the isolates must be investigated in details.

Conflict of interest

The authors declare no conflict of interest.

References

38. CASFM. Comite´ de l’Antibiogramme de la Socie´te´ Franc¸aise de Microbiologie; proposer les recommandations 2013, 2013.

50. Mohammed EAM. The role of fish and other invertebrate aquatic organisms in transmitting some bacterial diseases to man: MVSc thesis, Cairo University; 2012.

