GUT MICROBIOME IN CANCER: THE NEXT BIG OPPORTUNITY FOR BETTER PATIENT OUTCOMES?

Authors

  • Jure Povšin National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 121 Večna pot, 1000 Ljubljana; Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia
  • Timotej Sotošek National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 121 Večna pot, 1000 Ljubljana; Faculty of Chemistry and Chemical Engineering, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia
  • Metka Novak National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 121 Večna pot, 1000 Ljubljana, Slovenia
  • Barbara Breznik * National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 121 Večna pot, 1000 Ljubljana, Slovenia, barbara.breznik@nib.si https://orcid.org/0000-0003-0247-5811

DOI:

https://doi.org/10.26873/SVR-2029-2024

Keywords:

gut microbiome, cancer, treatment outcome, tumor models, glioma

Abstract

The gut microbiome, a diverse community of microorganisms in the human body, plays an important role in maintaining health and influences various processes such as digestion, immunity, and protection against pathogens. A person's unique gut microbiome, shaped by factors such as birth method, diet, antibiotics, and lifestyle, contributes to bodily functions such as nutrient metabolism, drug processing, and immune regulation. Changes in the gut microbiome are associated with a predisposition to cancer and can influence the effectiveness of cancer treatments. Dysbiosis in the gut microbiome can lead to inflammation, tumor development, and metastasis, highlighting its importance in cancer research and prevention. The gut microbiota significantly influences cancer development and treatment outcomes. Certain bacteria enhance the effects of therapies such as cyclophosphamide and contribute to the body's immune response against tumors. Microbes produce anti-cancer molecules and probiotic compounds, making them potential tools in cancer prevention and treatment. Future research aims to develop targeted antibiotics and explore fecal microbiota transfer to selectively manipulate the microbiota for improved cancer treatment. Due to genetic and physiological similarities, mouse models are invaluable in biomedical research. However, because the gut microbiome of humans and mice and the composition of the tumor microenvironment differ, direct comparison between these two models can be challenging in research. Bridging these gaps is crucial for comparative medicine, especially in cancer research where the microbiome plays an important role in treatment outcomes. One important area where the gut microbiome could offer potential new treatment options is in primary brain tumors such as gliomas. To date, there are no long-lasting effective treatments for this type of cancer, but research in mouse models shows a link between tumor progression and response to treatment with changes in the gut microbiome. Overall, the gut microbiome and its modulation represent an opportunity for more efficient future cancer treatment.

Črevesni mikrobiom pri raku: Naslednja velika priložnost za boljši izid bolnikov?

Črevesni mikrobiom, raznolika skupnost mikroorganizmov v človeškem telesu, igra pomembno vlogo pri ohranjanju zdravja in vpliva na različne telesne procese. Edinstven črevesni mikrobiom posameznika, ki ga oblikujejo dejavniki kot so način rojstva, prehrana, vnos antibiotikov in življenjski slog prispeva k različnim telesnim funkcijam. Te funkcije so presnova hranil, metabolizem zdravil in uravnavanje imunskega sistema. Spremembe v črevesnem mikrobiomu so povezane s predispozicijo za nastanek raka in lahko vplivajo na učinkovitost zdravljenja raka. Porušeno črevesno ravnovesje oz. disbioza v črevesnem mikrobiomu lahko vodi do vnetja, razvoja tumorjev in metastaz, kar poudarja njegov pomen v raziskavah raka. Črevesna mikrobiota pomembno vpliva na razvoj raka in rezultate zdravljenja. Nekatere bakterije povečajo učinke terapij kot je ciklofosfamid in prispevajo k boljšemu imunskemu odzivu proti raku. Mikroorganizmi proizvajajo protirakave molekule in probiotične spojine, ki so pomembno orodje pri preprečevanju in zdravljenju raka. Z nadaljnjimi raziskavami si znanstveniki želijo razviti ciljne antibiotike in raziskati prenos fekalne mikrobiote za selektivno manipulacijo mikrobiote. Zaradi genetskih in fizioloških podobnosti so mišji modeli neprecenljivi v biomedicinskih raziskavah, vendar pa zaradi razlik v črevesnem mikrobiomu ljudi in miši ter sestavi tumorskega mikrookolja neposredna primerjava med tema dvema modeloma lahko predstavlja izziv. Premostitev teh vrzeli je ključna za primerjalno medicino zlasti pri raziskavah raka, kjer mikrobiom igra pomembno vlogo pri izidih zdravljenja. Pri možganskih tumorjih gliomih lahko črevesni mikrobiom izkoristimo za potencialne nove možnosti zdravljenja. Dolgoročnega učinkovitega zdravljenja za to vrsto raka še ni, vendar raziskave na mišjih modelih kažejo povezavo med napredovanjem tumorja in odzivom na zdravljenje ter spremembami v črevesnem mikrobiomu. Črevesni mikrobiom in njegova modulacija predstavljata priložnost za učinkovitejše zdravljenje raka v prihodnosti.

Ključne besede: črevesni mikrobiom; rak; izid zdravljenja; tumorski modeli; gliom

References

Akbar N, Khan NA, Muhammad JS, Siddiqui R. The role of gut microbiome in cancer genesis and cancer prevention. Health Sci Rev 2022; 2(3): 100010. 10.1016/j.hsr.2021.100010

Alkadhi S, Kunde D, Cheluvappa R, Randall-Demllo S, Eri R. The murine appendiceal microbiome is altered in spontaneous colitis and its pathological progression. Gut Pathog 2014; 6: 25. doi: 10.1186/1757-4749-6-25

Almeida A, Nayfach S, Boland M, et al. A unified catalog of 204, 938 reference genomes from the human gut microbiome. Nat Biotechnol 2021; 39(1): 105–14. doi: 10.1038/s41587-020-0603-3

Amato KR, Yeoman CJ, Cerda G, et al. Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 2015; 3(1): 53. doi: 10.1186/s40168-015-0120-7

Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338(6103): 120–3. doi: 10.1126/science.1224820

Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021; 371(6529): 602–9. doi: 10.1126/science.abb5920

Beaurivage C, Naumovska E, Chang YX, et al. Development of a gut-on-a-chip model for high throughput disease modeling and drug discovery. Int J Mol Sci. 2019; 20(22): 5661. doi: 10.3390/ijms20225661

Bein A, Shin W, Jalili-Firoozinezhad S, et al. Microfluidic organ-on-a-chip models of human intestine. Cell Mol Gastroenterol Hepatol 2018; 5(4): 659–68. doi: 10.1016/j.jcmgh.2017.12.010

Bergounioux J, Elisee R, Prunier AL, et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 2012; 11(3): 240–52. doi: 10.1016/j.chom.2012.01.013

Bielanski A, Haber J. Structure, function and diversity of the healthy human microbiome. Nature 2012;486(7402): 207–14. doi: 10.1038/nature11234

Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249–55. doi: 10.1093/carcin/bgt392

Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev 2017; 40(1): 1–14. doi: 10.1007/s10143-016-0709-8

Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 2017; 28(6): 1368–79. doi: 10.1093/annonc/mdx108

Chaturvedi R, Asim M, Romero-Gallo J, et al. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011; 141(5): 1696-1708.e1–2. doi: 10.1053/j.gastro.2011.07.045

Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2020; 469: 456–67. doi: 10.1016/j.canlet.2019.11.019

Chen Q, Wang C, Chen G, Hu Q, Gu Z. Delivery Strategies for Immune Checkpoint Blockade. Adv Healthc Mater 2018; 7(20): e1800424. doi: 10.1002/adhm.201800424

Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut 2020; 69(10): 1867–76. doi: 10.1136/gutjnl-2020-321153

Costa MC, Arroyo LG, Allen-Vercoe E, et al. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the v3-v5 region of the 16s rrna gene. PLoS One 2012; 7(7): e41484. doi: 10.1371/journal.pone.0041484

D’Alessandro G, Antonangeli F, Marrocco F, et al. Gut microbiota alterations affect glioma growth and innate immune cells involved in tumor immunosurveillance in mice. Eur J Immunol 2020; 50(5): 705–11. doi: 10.1002/eji.201948354

Dai F, Yu W, Song J, Li Q, Wang C, Xie S. Extracellular polyamines-induced proliferation and migration of cancer cells by ODC, SSAT, and Akt1-mediated pathway. Anticancer Drugs 2017; 28(4): 457–64. doi: 10.1097/CAD.0000000000000465

Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21(5): 389–409. doi: 10.1093/molehr/gav003

Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced therapeutic immunomodulatory effects. Immunity 2016; 45(4): 931–43. doi: 10.1016/j.immuni.2016.09.009

Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021; 371(6529): 595–602. doi: 10.1126/science.abf3363

De Martel C, Ferlay J, Franceschi S, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13(6): 607–15. doi: 10.1016/S1470-2045(12)70137-7

Dees KJ, Koo H, Humphreys JF, et al. Human gut microbial communities dictate efficacy of anti-PD-1 therapy in a humanized microbiome mouse model of glioma. Neurooncol Adv 2021; 3(1): vdab023. doi: 10.1093/noajnl/vdab023

Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: impact of probiotics on diarrhea in patients treated with pelvic radiation. Clin Nutr 2014; 33(5): 761–7. doi: 10.1016/j.clnu.2013.10.015

Dennis KL, Blatner NR, Gounari F, Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol 2013; 25(6): 637–45. doi: 10.1097/CCO.0000000000000006

Ding SZ, Minohara Y, Xue JF, et al. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 2007; 75(8): 4030–9. doi: 10.1128/IAI.00172-07

Dono A, Patrizz A, McCormack RM, et al. Glioma induced alterations in fecal short-chain fatty acids and neurotransmitters. CNS Oncol 2020; 9(2): CNS57. doi: 10.2217/cns-2020-0007

Dunn GP, Rinne ML, Wykosky, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Gen Dev 2012; 26(8): 756–84. doi: 10.1101/gad.187922.112

Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3d organoid systems. Trends Mol Med 2017; 23(5): 393–410. doi: 10.1016/j.molmed.2017.02.007

Edwards PT, Kashyap PC, Preidis GA. Microbiota on biotics: Probiotics, prebiotics, and synbiotics to optimize growth and metabolism. Am J Physiol Gastrointest Liver Physiol. 2020;319(3):G382–90.

Erdmann J. How gut bacteria could boost cancer treatments. Nature 2022; 607(7919): 436–9. doi: 10.1038/d41586-022-01959-7

Fan H, Wang Y, Han M, et al. Multi-omics-based investigation of Bifidobacterium’s inhibitory effect on glioma: regulation of tumor and gut microbiota, and MEK/ERK cascade. Front Microbiol 2024; 15: 1344284. doi: 10.3389/fmicb.2024.1344284

Fan Y, Su Q, Chen J, Wang Y, He S. Gut Microbiome alterations affect glioma development and foxp3 expression in tumor microenvironment in mice. Front Oncol 2022; 12: 836953. doi: 10.3389/fonc.2022.836953

Fomby P, Cherlin AJ. Role of microbiota in immunity and inflammation. National Institute of Health 2011;72(2): 181–204.

Forbester JL, Goulding D, Vallier L, et al. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 2015; 83(7): 2926–34. doi: 10.1128/IAI.00161-15

Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunol 2009; 10(3): 241–7. doi: 10.1038/ni.1703

Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104(34): 13780–5. doi: 10.1073/pnas.0706625104

Gagnière J, Raisch J, Veziant J, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22(2): 501–18. doi: 10.3748/wjg.v22.i2.501

Garrett LA, Brown R, Poxton IR. A comparative study of the intestinal microbiota of healthy horses and those suffering from equine grass sickness. Vet Microbiol 2002; 87(1): 81–8. doi: 10.1016/s0378-1135(02)00018-4

Gianotti L, Morelli L, Galbiati F, et al. A randomized double-blind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol 2010; 16(2): 167–75. doi: 10.3748/wjg.v16.i2.167

Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 2020; 113(12): 2019–40. doi: 10.1007/s10482-020-01474-7

Goodwin AC, Destefano Shields CE, Wu, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A 2011; 108(37): 15354–9. doi: 10.1073/pnas.1010203108

Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359(6371): 97–103. doi: 10.1126/science.aan4236

Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011 ;9(4): 244–53. doi: 10.1038/nrmicro2537

Guinane CM, Tadrous A, Fouhy F, et al. Microbial composition of human appendices from patients following appendectomy. mBio 2013; 4(1): e00366–12. doi: 10.1128/mBio.00366-12

Günther C, Winner B, Neurath MF, Stappenbeck TS. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 2022; 71(9): 1892–908. doi: 10.1136/gutjnl-2021-326560

Gutiérrez-Vázquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 2018; 48(1): 19–33. doi: 10.1016/j.immuni.2017.12.012

Harari O, Liao JK. Inhibition of MHC II Gene Transcription by Nitric Oxide and Antioxidants. Curr Pharm Des 2004; 10(8): 893–8. doi: 10.2174/1381612043452893

Hatakka K, Saxelin M, Mutanen M, et al. Lactobacillus rhamnosus LC705 Together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. 2013; 27(4): 441–7. doi: 101080/07315724200810719723

Hattori N, Ushijima T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med 2016; 8(1): 10. doi: 10.1186/s13073-016-0267-2

Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 2013; 26(2): 191–209. doi: 10.1017/S0954422413000152

Hill DR, Spence JR. Gastrointestinal organoids: understanding the molecular basis of the host–microbe interface. Cell Mol Gastroenterol Hepatol 2017; 3(2): 138–49. doi: 10.1016/j.jcmgh.2016.11.007

Huycke MM, Moore D, Joyce W, et al. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42(3): 729–40. doi: 10.1046/j.1365-2958.2001.02638.x

Ishaq HM, Yasin R, Mohammad IS, et al. The gut-brain-axis: a positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10(9): e30494. doi: 10.1016/j.heliyon.2024.e30494

Jan G, Belzacq AS, Haouzi D, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 2002; 9(2): 179–88. doi: 10.1038/sj.cdd.4400935

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol 2015; 21(29): 8787–803. doi: 10.3748/wjg.v21.i29.8787

Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol 2020; 11: 282. doi: 10.3389/fimmu.2020.00282

Jin UH, Michelhaugh SK, Polin LA, Shrestha R, Mittal S, Safe S. Omeprazole inhibits glioblastoma cell invasion and tumor growth. Cancers 2020; 12(8): 2097. doi: 10.3390/cancers12082097

Johansson MEV, Jakobsson HE, Holmén-Larsson J, et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015; 18(5): 582–92. doi: 10.1016/j.chom.2015.10.007

Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 2013; 14(7): 685–90. doi: 10.1038/ni.2608

Kao CC, Cope JL, Hsu JW, et al. The microbiome, intestinal function, and arginine metabolism of healthy indian women are different from those of american and jamaican women. J Nutr 2015; 146(4): 706–13. doi: 10.3945/jn.115.227579

Kasendra M, Tovaglieri A, Sontheimer-Phelps A, et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep 2018; 8(1): 2871. doi: 10.1038/s41598-018-21201-7

Kennedy EA, King KY, Baldridge MT. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol 2018; 9: 1534. doi: 10.3389/fphys.2018.01534

Kieser S, Zdobnov EM, Trajkovski M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput Biol 2022; 18(3): e1009947. doi: 10.1371/journal.pcbi.1009947

Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012; 12(12): 2165–74. doi: 10.1039/c2lc40074j

Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017; 279(1): 90–105. doi: 10.1111/imr.12563

Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature Communications 2016; 7: 12365. doi: 10.1038/ncomms12365

Krych L, Hansen CHF, Hansen AK, van den Berg FWJ, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One 2013; 8(5): e62578. doi: 10.1371/journal.pone.0062578

Lam W, Bussom S, Guan F, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med 2010; 2(45): 45ra59. doi: 10.1126/scitranslmed.3001270

Legesse Bedada T, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother 2020; 129: 110409. doi: 10.1016/j.biopha.2020.110409

Levy M, Thaiss CA, Katz MN, Suez J, Elinav E. Inflammasomes and the microbiota—partners in the preservation of mucosal homeostasis. Semin Immunopathol 2015; 37(1): 39–46. doi: 10.1007/s00281-014-0451-7

Ley RE, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science 2008; 320(5883): 1647–51. doi: 10.1126/science.1155725

Li Y, Baldridge MT. Modelling human immune responses using microbial exposures in rodents. Nat Microbiol 2023; 8(3): 363–6. doi: 10.1038/s41564-023-01334-w

Lin C, Cai X, Zhang J, et al. Role of gut microbiota in the development and treatment of colorectal cancer. Digestion 2019; 100(1): 72–8. doi: 10.1159/000494052

Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 2017; 7(5): 522–38. doi: 10.1158/2159-8290.CD-16-0932

Ma C, Han M, Heinrich B, et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018; 360(6391): eaan5931. doi: 10.1126/science.aan5931

Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359(6371): 104–8. doi: 10.1126/science.aao3290

Mego M, Chovanec J, Vochyanova-Andrezalova I, et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement Ther Med 2015; 23(3): 356–62. doi: 10.1016/j.ctim.2015.03.008

Mego M, Holec V, Drgona L, Hainova K, Ciernikova S, Zajac V. Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy. Complement Ther Med 2013; 21(6): 712–23. doi: 10.1016/j.ctim.2013.08.018

Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics 2018; 16(1): 33–49. doi: 10.1016/j.gpb.2017.06.002

Morgan XC, Huttenhower C. Chapter 12: Human microbiome analysis. PLoS Comput Biol 2012; 8(12): e1002808. doi: 10.1371/journal.pcbi.1002808

Morse HC. Building a better mouse: one hundred years of genetics and biology. In: Fox JG, eds. The mouse in biomedical research: history, wild mice, and genetics. 2nd ed. Amsterdam: Elsevier, 2006.

Nagpal R, Shively CA, Appt SA, et al. Gut microbiome composition in non-human primates consuming a western or mediterranean diet. Front Nutr 2018; 5: 28. doi: 10.3389/fnut.2018.00028

Nagpal R, Wang S, Solberg Woods LC, et al. Comparative microbiome signatures and short-chain fatty acids in mouse, rat, non-human primate, and human feces. Front Microbiol 2018; 9: 2897. doi: 10.3389/fmicb.2018.02897

Nasrollahzadeh D, Malekzadeh R, Ploner A, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Sci Rep 2015; 5: 8820. doi: 10.1038/srep08820

Naumovska E, Aalderink G, Valencia CW, et al. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21(14): 4964. doi: 10.3390/ijms21144964

Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368(6494): 973–80. doi: 10.1126/science.aay9189

Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015 Jan 1;8(1):1–16.

Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 2020; 585(7826): 574–8. doi: 10.1038/s41586-020-2724-8

Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313(5788): 848–51. doi: 10.1126/science.1127059

Paavonen J, Naud P, Salmerón J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374(9686): 301–14. doi: 10.1016/S0140-6736(09)61248-4

Park JC, Im SH. Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med 2020; 52(9): 1383–96. doi: 10.1038/s12276-020-0473-2

Patrizz A, Dono A, Zorofchian S, et al. Glioma and temozolomide induced alterations in gut microbiome. Sci Rep 2020; 10(1): 21002. doi: 10.1038/s41598-020-77919-w

Paul W, Marta C, Tom V de W. Resolving host–microbe interactions in the gut: the promise of in vitro models to complement in vivo research. Curr Opin Microbiol 2018; 44: 28–33. doi: 10.1016/j.mib.2018.07.001

Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 2007; 117(8): 2197–204. doi: 10.1172/JCI32205

Proctor LM. The human microbiome project in 2011 and beyond. Cell Host Microbe 2011; 10(4): 287–91. doi: 10.1016/j.chom.2011.10.001

Rasouli BS, Ghadimi-Darsajini A, Nekouian R, Iragian GR. In vitro activity of probiotic Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor gene expression. J Cancer Res Ther 2017; 13(2): 246–51. doi: 10.4103/0973-1482.204897

Redman MG, Ward EJ, Phillips RS. The efficacy and safety of probiotics in people with cancer: a systematic review. Ann Oncol 2014; 25(10): 1919–29. doi: 10.1093/annonc/mdu106

Rivoltini L, Carrabba M, Huber V, et al. Immunity to cancer: attack and escape in T lymphocyte–tumor cell interaction. Immunol Rev 2002; 188(1): 97–113. doi: 10.1034/j.1600-065x.2002.18809.x

Rosas-Plaza S, Hernández-Terán A, Navarro-Díaz M, Escalante AE, Morales-Espinosa R, Cerritos R. Human gut microbiome across different lifestyles: from hunter-gatherers to urban populations. Front Microbiol 2022; 13: 843170. doi: 10.3389/fmicb.2022.843170

Rostaher A, Morsy Y, Favrot C, Unterer S, Schnyder M, Scharl M, et al. Comparison of the gut microbiome between atopic and healthy dogs—preliminary data. Animals (Basel) 2022; 12(18): 2377. doi: 10.3390/ani12182377

Salcedo R, Worschech A, Cardone M, et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 2010; 207(8): 1625–36. doi: 10.1084/jem.20100199

Sánchez-Alcoholado L, Ramos-Molina B, Otero A, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel) 2020; 12(6): 1406. doi: 10.3390/cancers12061406

Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459(7244): 262–5. doi: 10.1038/nature07935

Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800–12. doi: 10.1038/nrc3610

Schweiger PJ, Jensen KB. Modeling human disease using organotypic cultures. Curr Opin Cell Biol 2016; 43: 22–9. doi: 10.1016/j.ceb.2016.07.003

Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14(8): e1002533. doi: 10.1371/journal.pbio.1002533

Shelkey E, Oommen D, Stirling ER, et al. Immuno-reactive cancer organoid model to assess effects of the microbiome on cancer immunotherapy. Sci Rep 2022; 12(1): 9983. doi: 10.1038/s41598-022-13930-7

Shu YZ, Arcuri M, Kozlowski M, et al. Haloemodins, a new class of endothelin-1 type B (ETB) receptor binding inhibitors. J Antibiot 1994;47(11):1328–32.

Sjaastad FV, Huggins MA, Lucas ED, et al. Reduced T cell priming in microbially experienced “dirty” mice results from limited il-27 production by xcr1+ dendritic cells. J Immunol 2022; 209(11): 2149–59.

Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011; 470(7332): 105–9. doi: 10.1038/nature09691

Spiljar M, Merkler D, Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 2017; 8: 1353. doi: 10.3389/fimmu.2017.01353

Taelman J, Diaz M, Guiu J. Human intestinal organoids: promise and challenge. Front Cell Dev Biol 2022; 10: 854740. doi: 10.3389/fcell.2022.854740

Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–84. doi: 10.1126/science.aad1329

Viaud S, Saccheri F, Mignot G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342(6161): 971–6. doi: 10.1126/science.1240537

Vivarelli S, Salemi R, Candido S, et al. Gut Microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 2019; 11(1): 38. doi: 10.3390/cancers11010038

Wada Y, Takemura K, Tummala P, et al. Helicobacter pylori induces somatic mutations in TP53 via overexpression of CHAC1 in infected gastric epithelial cells. FEBS Open Bio 2018; 8(4): 671–9. doi: 10.1002/2211-5463.12402

Wallace BD, Wang H, Lane KT, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010; 330(6005): 831–5. doi: 10.1126/science.1191175

Wan Y, Wang F, Yuan J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut Microbiota 2019; 68(8): 1417–29. doi:10.1136/gutjnl-2018-317609

Wei H, Chen L, Lian G, et al. Antitumor mechanisms of bifidobacteria . Oncol Lett 2018; 16(1): 3–8. doi: 10.3892/ol.2018.8692

Wei W, Sun W, Yu S, Yang Y, Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma 2016; 57(10): 2401–8. doi: 103109/1042819420161144879.

Williamson IA, Arnold JW, Samsa LA, et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell Mol Gastroenterol Hepatol 2018; 6(3): 301–19. doi: 10.1016/j.jcmgh.2018.05.004

Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499(7456): 97–101. doi: 10.1038/nature12347

Zaragoza-Ojeda M, Apatiga-Vega E, Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: biological and therapeutic implications . Oncol Lett 2021; 21(6): 460. doi: 10.3892/ol.2021.12721

Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis 2020; 8(5): 581–9. doi: 10.1016/j.gendis.2020.08.002

Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut Microbes 2013; 4(3): 193–200. doi: 10.4161/gmic.23867

Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nature Immunol 2012; 13(4): 343–51. doi: 10.1038/ni.2224

Downloads

Published

2025-02-28

How to Cite

Povšin, J., Sotošek, T., Novak, M., & Breznik, B. (2025). GUT MICROBIOME IN CANCER: THE NEXT BIG OPPORTUNITY FOR BETTER PATIENT OUTCOMES?. Slovenian Veterinary Research, 62(27-Suppl), 13–26. https://doi.org/10.26873/SVR-2029-2024

Issue

Section

Review Article