MICROSATELLITE DIVERSITY IN BOS TAURUS, EQUUS CABALLUS AND GALLUS DOMESTICUS BREEDS REARED IN UKRAINE
DOI:
https://doi.org/10.26873/SVR-1804-2024Keywords:
microsatellite, diversity, polymorphism, population, local breeds, cattle, horse, chickenAbstract
This study is dedicated to the comparative analysis of the main parameters of microsatellite variability in the populations of animals from different taxa (Bos taurus, Equus caballus, and Gallus domesticus) of different breeds, reared in Ukraine. To investigate microsatellite variability, the following SSR-markers were used: for Bos taurus – TGLA126, TGLA122, INRA023, ETH003, ETH225, BM1824, TGLA227, BM2113, ETH10 and SPS115; for Equus caballus – HTG04, HMS06, AHT04, ASB23, HTG07, HTG06, CA425, VHL20, HMS03, HMS07 and ASB17; for Gallus domesticus – ADL0268, ADL0278, MCW0248, LEI0094 and MCW0216. The results of analyzing the parameter of the average number of alleles per locus (A) were used to determine their least amount in Gallus domesticus (6.56) and the highest one – in Equus caballus (10.76). The observed data are in agreement with the standardization procedure results, based on the rarefaction analysis on the level of 25 animals for each specific species of animals. The highest values of the total genetic diversity (uHe) were notable for Bos taurus (0.835), and the lowest ones – for Gallus domesticus (0.690). These results were confirmed by the Shannon’s index values (1.940 for Bos taurus, 1.886 for Equus caballus and 1.420 for Gallus domesticus) as well as by the number of effective alleles (6.166; 5.614 and 3.848, respectively). The value of genetic subdivision (differentiation) according to Fst values fluctuated depending on the taxon and amounted to 0.119 for Gallus domesticus; 0.043 for Equus caballus and 0.03 for Bos taurus. Genetic differentiation between the populations, evaluated by the analysis of molecular variance (AMOVA), was in the range from 3 to 14 % for different taxa.
Mikrosatelitska raznolikost pri pasmah Bos taurus, Equus caballus in Gallus domesticus, vzrejenih v Ukrajini
Izvleček: Raziskava je bila posvečena primerjalni analizi glavnih parametrov variabilnosti mikrosatelitov v populacijah živali različnih taksonov (Bos taurus, Equus caballus in Gallus domesticus) različnih pasem, ki se vzrejajo v Ukrajini. Za raziskovanje mikrosatelitske variabilnosti so bili uporabljeni naslednji SSR-označevalci: za Bos taurus – TGLA126, TGLA122, INRA023, ETH003, ETH225, BM1824, TGLA227, BM2113, ETH10 in SPS115; za Equus caballus – HTG04, HMS06, AHT04, ASB23, HTG07, HTG06, CA425, VHL20, HMS03, HMS07 in ASB17; za Gallus domesticus – ADL0268, ADL0278, MCW0248, LEI0094 in MCW0216. Na podlagi rezultatov analize parametra povprečnega števila alelov na lokus (A) smo njihovo najmanjšo količino določili pri Gallus domesticus (6,56) in največjo pri Equus caballus (10,76). Ugotovljeni podatki so v skladu z rezultati postopka standardizacije, ki temelji na analizi redkosti na ravni 25 živali za vsako posamezno živalsko vrsto. Najvišje vrednosti skupne genetske raznolikosti (uHe) so bile opazne za Bos taurus (0,835), najnižje pa za Gallus domesticus (0,690). Te rezultate so potrdili vrednosti Shannonovega indeksa (1,940 za Bos taurus, 1,886 za Equus caballus in 1,420 za Gallus domesticus) ter število učinkovitih alelov (6,166; 5,614 in 3,848). Vrednost genetske delitve (diferenciacije) glede na vrednosti Fst je nihala glede na takson in je znašala 0,119 za Gallus domesticus; 0,043 za Equus caballus in 0,03 za Bos taurus. Genetska diferenciacija med populacijami, ocenjena z analizo molekularne variance (AMOVA), je bila pri različnih taksonih v razponu od 3 do 14 odstotkov.
Ključne besede: mikrosateliti; raznolikost; polimorfizem; populacija; lokalne pasme; govedo; konj; piščanec
References
Abebe AS, Mikko S, Johansson AM. Genetic diversity of five local Swedish chicken breeds detected by microsatellite markers. PLoS ONE 2015; 10(4): e0120580. doi: 10.1371/journal. pone.0120580 DOI: https://doi.org/10.1371/journal.pone.0120580
Agung PP, Saputra F, Zein MSA, et al. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australas J Anim Sci. 2019; 32(4):467-476. doi: 10.5713/ajas.18.0283 DOI: https://doi.org/10.5713/ajas.18.0283
Bernardi J, Colli L, Ughini V, Busconi M. Use of microsatellites to study agricultural biodiversity and food traceability. In: Abdurakhmonov IY, ed. Microsatellite Markers. London: IntechOpen, 2016. doi: 10.5772/64863 DOI: https://doi.org/10.5772/64863
Demir E, Balcioğlu MS. Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech J Anim Sci 2019; 64(10): 411–9. doi: 10.17221/62/2019-cjas DOI: https://doi.org/10.17221/62/2019-CJAS
Dorji J, Tamang S, Tshewang T, et al. Genetic diversity and population structure of three traditional horse breeds of Bhutan based on 29 DNA microsatellite markers. PLoS ONE 2018;13(6): e0199376. doi: 10.1371/journal.pone.0199376 DOI: https://doi.org/10.1371/journal.pone.0199376
Eda M. Origin of the domestic chicken from modern biological and zooarchaeological approaches. Anim Front 2021; 11(3): 52–61. doi: 10.1093/af/vfab016 DOI: https://doi.org/10.1093/af/vfab016
Gargani M, Pariset L, Lenstra JA, et al. Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Front Genet 2015; 6: 68. doi: 10.3389/fgene.2015.00068 DOI: https://doi.org/10.3389/fgene.2015.00068
Goudet J. FSTAT (Version 1.2): a computer program to calculate f-statistics. J Hered 1995; 86(6): 485–6. doi: 10.1093/oxfordjournals.jhered.a111627 DOI: https://doi.org/10.1093/oxfordjournals.jhered.a111627
Groeneveld LF, Lenstra JA, Eding H, et al. Genetic diversity in farm animals - a review. Anim Genet 2010; 41(Suppl. 1): 6–31. doi:10.1111/j.1365-2052.2010.02038.x DOI: https://doi.org/10.1111/j.1365-2052.2010.02038.x
Guseev YV, Мtlyyk ОV, Gladyr EA, Zinovieva NA. The polymorphism of five microsatellite DNA loci in the study of Ukrainian Grey and Bulgarian Grey cattle breeds. Anim Breeding Genet 2016; 52: 202–11. doi: 10.31073/abg.52.27 DOI: https://doi.org/10.31073/abg.52.27
Habimana R, Okeno TO, Ngeno K, et al. Genetic diversity and population structure of indigenous chicken in Rwanda using microsatellite markers. PLoS ONE 2020; 15(4): e0225084. doi: 10.1371/journal.pone.0225084 DOI: https://doi.org/10.1371/journal.pone.0225084
Jakaria J, Alwiyah A, Saputra F, et al. Genetic diversity between Bali cattle (Bos javanicus) and its hybrids using microsatellite markers. Iranian J Appl Anim Sci 2020; 10(3): 453–60.
Kalinowski ST. Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 2004; 5(4): 539–43. doi: 10.1023/b:coge.0000041021.917 DOI: https://doi.org/10.1023/B:COGE.0000041021.91777.1a
Kalinowski ST. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 2005; 5(1): 187–9. doi: 10.1111/j.1471-8286.2004.00845.x DOI: https://doi.org/10.1111/j.1471-8286.2004.00845.x
Kim SM, Sung Wook Yun SW, Cho GJ. Assessment of genetic diversity using microsatellite markers to compare donkeys (Equus asinus) with horses (Equus caballus). Anim Biosci 2021; 34(9): 1460–5. doi:10.5713/ab.20.0860 DOI: https://doi.org/10.5713/ab.20.0860
Koseman A, Ozsensoy Y, Erdogan M, et al. Investigation of genetic variations using microsatellite markers in colored horses in Turkey. Russ J Genet 2020; 56(5): 592–602. doi: 10.1134/s1022795420050075 DOI: https://doi.org/10.1134/S1022795420050075
Kulibaba R, Liashenko Y, Yurko P. Genetic structure features of cattle populations of Ukrainian selection by polymorphism of loci, associated with milk productivity traits. Agricult Sci Pract 2019; 6(3): 37–44. doi: 10.15407/agrisp6.03.037 DOI: https://doi.org/10.15407/agrisp6.03.037
Kulibaba RO, Liashenko YV. Microsatellite diversity in the populations of Ukrainian local chicken breeds. Sci Messenger LNU Vet Med Biotechnol 2018; 20(84): 70–6. doi: 10.15421/nvlvet8413 DOI: https://doi.org/10.15421/nvlvet8413
Kuznetsov VM. Wright’s F-statistics: estimation and interpretation. Probl Product Anim Biol 2014; 4: 80–104.
Ladyka VІ, Khmelnychyi LM, Lyashenko YV, Kulibaba RO. Analysis of the genetic structure of a population of Lebedyn cattle by microsatellite markers. Regul Mech Biosyst 2019; 10(1): 45–9. doi: 10.15421/021907 DOI: https://doi.org/10.15421/021907
Machugh DE, Loftus RT, Bradley DG, Sharp PM, Cunningham P. Microsatellite DNA variation within and among European cattle breeds. Proc Biol Sci 1994; 256(1345): 25–31. doi: 10.1098/rspb.1994.0044 DOI: https://doi.org/10.1098/rspb.1994.0044
Misrianti R, Wijaya SH, Sumantri C, et al. Genetic diversity analysis and determination of specific alleles of kuantan cattle using microsatellite markers. Trop Anim Sci J 2022; 45(2): 134–40. doi: 10.5398/tasj.2022.45.2.134 DOI: https://doi.org/10.5398/tasj.2022.45.2.134
Okumu ON, Ngeranwa JJN, Binepal YS, et al. Genetic diversity of indigenous chickens from selected areas in Kenya using microsatellite markers. J Genet Eng Biotechnol 2017; 15(2): 489–95. doi: 10.1016/j.jgeb.2017.04.007 DOI: https://doi.org/10.1016/j.jgeb.2017.04.007
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 2012; 28: 2537–9. DOI: https://doi.org/10.1093/bioinformatics/bts460
Sargious M, El-Shawarby R, Abo-Salem M, et al. Genetic diversity of Egyptian Arabian horses from El-zahraa stud based on 14 tky microsatellite markers. Slov Vet Res 2021; 58(2): 55–62. doi: 10.26873/SVR-1041-2020 DOI: https://doi.org/10.26873/SVR-1041-2020
Sartika T, Saputra F, Takahashi H. Genetic diversity of eight native Indonesian chicken breeds on microsatellite markers. Hayati J Biosci 2023; 30 (1): 122–30. doi: 10.4308/hjb.30.1.122-130 DOI: https://doi.org/10.4308/hjb.30.1.122-130
Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006; 9(5): 615–29. doi: 10.1111/j.1461-0248.2006.00889.x DOI: https://doi.org/10.1111/j.1461-0248.2006.00889.x
Seo J.-H, Park K.-D, Lee H-K, Kong H-S. Genetic diversity of Halla horses using microsatellite markers. J Anim Sci Technol 2016; 58: 40. doi: 10.1186/s40781-016-0120-6 DOI: https://doi.org/10.1186/s40781-016-0120-6
Shelyov A, Kopylov K, Vdovychenko Y, Kramarenko S, Kramarenko AS. Formation of the genetic structure of cattle populations by single locus DNA fragments depending on their productivity direction and origin. Agricult Sci Pract 2021; 8(3): 35-49. doi: 10.15407/agrisp8.03.035 DOI: https://doi.org/10.15407/agrisp8.03.035
Shelyov AV, Kopylov KV, Kramarenko SS, Kramarenko AS. Genetic structure of different equine breeds by microsatellite DNA loci. Agricult Sci Pract 2020: 7(2): 3-13. doi: 10.15407/agrisp7.02.003 DOI: https://doi.org/10.15407/agrisp7.02.003
Snegin EA, Kramarenko AS, Snegina EA, Kramarenko SS. Evaluation of genetic diversity and relationships among eight Russian and Ukrainian cattle breeds based on microsatellite markers. Regul Mech Biosyst 2019; 10(4): 388–93. doi: 10.15421/021958 DOI: https://doi.org/10.15421/021958
Viryanski D. Microsatellite markers – a tool for molecular characterization of cattle genetic resources. Bulgarian J Agric Sci 2019; 25(1): 158–65.
Wright S. Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations. Chicago: University of Chicago Press, 1978.
Yacouba Z, Isidore H, Michel K, et al. Genetic diversity and population structure of local chicken ecotypes in burkina faso using microsatellite markers. Genes (Basel) 2022; 13: 1523. doi: 10.3390/genes13091523 DOI: https://doi.org/10.3390/genes13091523
Yordanov G, Mehandjyiski I, Palova N, et al. Genetic diversity and structure of the main Danubian horse paternal genealogical lineages based on microsatellite genotyping. Vet Sci 2022; 9: 333. doi: 10.3390/vetsci9070333 DOI: https://doi.org/10.3390/vetsci9070333
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Roman Kulibaba, Andriy Shelyov, Kyrylo Kopylov, Kateryna Kopylova

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.