THE EFFECT OF ASCENDING DOSES OF KETOPROFEN ON BIOCHEMICAL AND COAGULATION PARAMETERS IN LAMBS
DOI:
https://doi.org/10.26873/SVR-1725-2023Keywords:
drug safety, haemostatic function, hepatotoxicity, ketoprofen, lambs, nephrotoxicity, non-steroidal anti-inflammatory drugAbstract
Ketoprofen (KTP) is a non-steroidal anti-inflammatory drug (NSAID) used as an analgesic, antipyretic and anti-inflammatory agent in human and veterinary medicine. Although KTP is used in the treatment of diseases such as musculoskeletal inflammation, endotoxemia, pneumonia, enteritis in sheep and minor surgical procedures such as dehorning and castration there is no information about its safety. The aim of this study is to determine the effect of KTP on biochemical and coagulation parameters following intramuscular (IM) administration of different doses of KTP to lambs. In the study, 18 clinically healthy lambs were randomly divided into three groups of 6 animals each. KTP was administered IM to lambs at doses of 1.5, 3 and 6 mg/kg. Biochemical and coagulation parameters were evaluated by taking blood samples before drug administration (0 hour) and at 24 hours and 48 hours after administration. No local or systemic side effects were observed in lambs after the administration of KTP at different doses. The aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) values at 24 hours significantly increased compared to 0 hours in all dosage groups (p<0.05). KTP did not cause a significant change in albumin (ALB), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine (CRE), CK and LDH values in different dose groups. The AST value was only significantly higher in the 6 mg/ kg dose group compared to the 1.5 mg/kg dose group at 24 hours (p<0.05). Although there was no statistically significant difference in intragroup prothrombin time (PT), fibrinogen and D-dimer levels in all dose groups, a significant increase was observed in the activated partial thromboplastin time (aPTT) value of 6 mg/kg dose group at the 24 hours compared to the 0 hour (p<0.05). As a result, after IM administration of 1.5, 3 and 6 mg/kg, increased CK and LDH values, which may be associated with muscle damage, may limit use of KTP via IM injection in lambs.
Vpliv naraščajočih odmerkov ketoprofena na biokemične in koagulacijske parametre pri jagnjetih
Izvleček: Ketoprofen (KTP) je nesteroidno protivnetno zdravilo (NSAID), ki se v humani in veterinarski medicini uporablja kot sredstvo proti bolečinam, povišani temperaturi in vnetju. Čeprav se KTP pri ovcah uporablja za zdravljenje mišičnoskeletnih vnetij, endotoksemije, pljučnice, enteritisa in pri manjših kirurških posegih, kot sta odstranjevanje rogov in kastracija, ni podatkov o varnosti zdravila. Namen te študije je bil ugotoviti vpliv biokemijskih in koagulacijskih parametrov po intramuskularni (IM) aplikaciji različnih odmerkov KTP pri jagnjetih. Vrednosti aspartataminotransferaze (AST), kreatin kinaze (CK) in laktat dehidrogenaze (LDH) so se po 24 urah v primerjavi z 0 urami v vseh skupinah znatno povečale (p < 0,05). KTP ni povzročil značilnih sprememb vrednosti albumina (ALB), alanin aminotransferaze (ALT), dušika sečnine v krvi (BUN), kreatinina (CRE), CK in LDH v različnih skupinah odmerkov. Vrednost AST je bila po 24 urah pomembno višja le v skupini z odmerkom 6 mg/kg v primerjavi s skupino z odmerkom 1,5 mg/kg (p < 0,05). Čeprav znotraj posameznih skupin ni bilo statistično pomembnih razlik v vrednostih protrombinskega časa (PT), fibrinogena in D-dimerov, smo v skupini z odmerkom 6 mg/kg v 24 urah v primerjavi z uro 0 opazili znatno povečanje vrednosti aktiviranega delnega tromboplastinskega časa (aPTT) (p < 0,05). Posledično bi lahko povečane vrednosti CK in LDH (ki so lahko povezane s poškodbami mišic) omejile uporabo IM aplikacije KTP pri jagnjetih.
Ključne besede: varnost zdravil; hemostatska funkcija; hepatotoksičnost; ketoprofen; jagnjeta; nefrotoksičnost; nesteroidno protivnetno zdravilo
References
1. Curry SL, Cogar SM, Cook JL. Nonsteroidal antiinflammatory drugs: a review J Am Anim Hosp Assoc 2005; 41(5): 298–309.
2. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31(5): 986–1000.
3. Lizarraga I, Chambers JP. Use of analgesic drugs for pain management in sheep. N Z Vet J 2012; 60(2): 87–94.
4. Papich MG. Papich handbook of veterinary drugs. 5th ed. Philadelphia: Elsevier Saunders, 2021: 498–500.
5. Arifah AK, Landoni MF, Frean SP, Lees P. Pharmacodynamics and pharmacokinetics of ketoprofen enantiomers in sheep. Am J Vet Res 2001; 62(1): 77–86.
6. Paull DR, Colditz IG, Lee C, Atkinson SJ, Fisher AD. Effectiveness of nonsteroidal antiinflammatory drugs and epidural anaesthesia in reducing the pain and stress responses to a surgical husbandry procedure (mulesing) in sheep. Aust J Exp Agric 2008; 48: 1034–1039.
7. Er A, Dik B, Corum O, et al. Cardiac safety of diclofenac at a single dose in ram. ScientificWorldJournal 2013: 808731. doi: 10.1155/2013/808731
8. Lascelles BDX, McFarland JM, Swann H. Guidelines for safe and effective use of NSAIDs in dogs. Vet Ther 2005; 6(3): 237–51.
9. Çorum O, Uney K, Er A, Durna Corum D. The effect of cefquinome on hematological and biochemical parameters following repeated subcutaneous administrations in sheep. Vet J Kastamonu Univ 2022; 1(1): 1–7.
10. Herring J, McMichael M. Diagnostic approach to small animal bleeding disorders. Top Companion Anim Med 2012; 27(2): 73–80.
11. Singh RD, Devi S, Gondaliya SR, Bhavsar SK, Thaker AM. Safety of Ketoprofen in Cow calves following repeated intravenous administration. Vet World 2009; 2(3): 105–7.
12. MacAllister CG, Morgan SJ, Borne AT, Pollet RA Comparison of adverse effects of phenylbutazone, flunixin meglumine, and ketoprofen in horses. J Am Vet Med Assoc 1993; 202(1): 71–7.
13. Narita T, Tomizawa N, Sato R, Goryo M, Hara S. Effects of long-term oral administration of ketoprofen in clinically healthy beagle dogs. J Vet Med Sci 2005; 67(9): 847–53.
14. Fazzio LE, Raggio SJ, Romero JF, MembrebeJ, Minervino AHH. Safety study on ketoprofen in pigs: evaluating the effects of different dosing and treatment scheme on hematological, hepatic, and renal parameters. Vet Sci 2021; 8(2): 30. doi: 10.3390/vetsci8020030
15. Kokki H. Ketoprofen pharmacokinetics, efficacy, and tolerability in pediatric patients. Pediatr Drugs 2010; 12(5): 313–29.
16. Luna SP, Basílio AC, Steagall PV, et al. Evaluation of adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. Am J Vet Res 2007; 68(3):258–64.
17. Spofford CM, Ashmawi H, Subieta A, et al. Ketoprofen produces modality-specific inhibition of pain behaviors in rats after plantar incision. Anesth Analg 2009; 109(6):1992–9.
18. Prado WA, Pontes RMC. Presurgical ketoprofen, but not morphine, dipyrone, diclofenac or tenoxicam, preempts postincisional mechanical allodynia in rats. Braz J Med Biol Res 2002; 35: 111–9.
19. Salichs M, Sabaté D, Ciervo O, Homedes J. Comparison of the antipyretic efficacy of ketoprofen, acetylsalicylic acid, and paracetamol, orally administered to swine. J Vet Pharmacol Ther 2012; 35(2): 198–201.
20. De Koster J, Boucher JF, Tena JK, Gehring R, Stegemann MR. Co‐formulation of ketoprofen with tulathromycin alters pharmacokinetic and pharmacodynamic profile of ketoprofen in cattle. J Vet Pharmacol Ther 2022; 45(1): 69–82.
21. Lamon TK, Browder EJ, Sohrabji F, Ihrig M. Adverse effects of incorporating ketoprofen into established rodent studies. J Am Assoc Lab Anim Sci 2008; 47(4): 20–4.
22. Lascelles BDX, Court MH, Hardie EM, Robertson SA. Nonsteroidal antiinflammatory drugs in cats: a review. Vet Anaesth Analg 2007; 34(4): 228–50.
23. Cheng HF, Harris RC. Renal effects of nonsteroidal antiinflammatory drugs and selective cyclooxygenase-2 inhibitors. Curr Pharm Des 2005; 11(14): 1795–804.
24. Krötz F, Schiele TM, Klauss V, Sohn HY. Selective COX-2 inhibitors and risk of myocardial infarction. J Vasc Res 2005; 42(4): 312–24.
25. Jenerowicz D, Jakubowicz O, Polańska A, Przytocka SA, Pazdrowska AD, Żaba R. Review paper Photosensitivity to selected topical nonsteroidal antiinflammatory drugs preparations–a review of literature data and author’s own experience. Cent Eur J Immunol 2011; 36(3): 197–203..
26. Narjes H, Türck D, Busch U, Heinzel G, Nehmiz G. Pharmacokinetics and tolerability of meloxicam after im administration. Br J Clin Pharmacol 1996; 41(2):135–9.
27. Klein R, Nagy O, Tóthová C, Chovanová F. Clinical and diagnostic significance of lactate dehydrogenase and its isoenzymes in animals. Vet Med Int 2020; 2020: 5346483. doi: 10.1155/2020/5346483
28. Smith GS, Walter GL, Walker RM. Clinical pathology in non-clinical toxicology testing. In: Haschek WM, Rousseaux CG, Wallig MA, eds. Haschek and Rousseaux’s handbook of toxicologic pathology. Amsterdam: Academic Press, 2013: 565–94.
29. Ndrepepa G. Aspartate aminotransferase and cardiovascular disease—a narrative review. J Lab Precis Med 2021; 6: 6. doi: 10.21037/jlpm-20-9
30. Sriuttha P, Sirichanchuen B, Permsuwan U. Hepatotoxicity of nonsteroidal antiinflammatory drugs: a systematic review of randomized controlled trials. Int J Hepatol 2018; 2018: 5253626. doi: 10.1155/2018/5253623
31. Paunescu A, Ponepal CM, Zagardan MC, et al. Evaluation of histophysiological alterations associated with ketoprofen administration in albino NMRI mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(6): 1033–9.
32. Ugwu N, Eze C, Udegbunam R. Evaluation of haematological and serum biochemical changes associated with constant rate infusion tramadol hydrochloride as an adjunct to ketoprofen in laparotomized and ovariohysterectomized dogs. Comp Clin Path 2017; 26: 1135–40.
33. Mozaffari AA, Derakhshanfar A, Alinejad A, Moorovati M. A comparative study on the adverse effects of flunixin, ketoprofen and phenylbutazone in miniature donkeys: haematological, biochemical and pathological findings. N Z Vet J 2010; 58(5): 224–8.
34. Schafer AI. Effects of nonsteroidal antiinflammatory drugs on platelet function and systemic hemostasis. J Clin Pharmacol 1995; 35(3): 209–19.
35. Stichtenoth DO, Tsikas D, Gutzki FM, Frölich JC. Effects of ketoprofen and ibuprofen on platelet aggregation and prostanoid formation in man. Eur J Clin Pharmacol 1996; 51(3/4): 231–4.
36. Zanuzzo FS, Teixeira‐Neto FJ, Thomazini CM, Takahira RK, Conner B, Diniz MS. Effects of dipyrone, meloxicam, or the combination on hemostasis in conscious dogs. J Vet Emerg Crit Care (San Antonio) 2015; 25(4): 512–20.
37. Foley SR, Solano C, Simonova G, et al. A comprehensive study of ovine haemostasis to assess suitability to model human coagulation. Thromb Res 2014; 134(2): 468–73.
38. Turgut S, Parlatır Y, Erdoğan H, Paşa S. Investigation of the effects of flunixine meglumine and meloxycam administration on coagulation profiles in healthy sheep. Ataturk Univ J Vet Sci 2018;13(3): 301–8.
39. Pozzobon R, Brass KE, Rubin MIB, et al. Meloxicam and ketoprofen did not alter coagulation and haematological parameters of healthy ponies.In: Proceedings of the 11th International Congress of World Equine Veterinary Association, Guarujá: WEVA, 2009. https://www.ivis.org/library/weva/weva-internal-congress-brazil-2009/meloxi-cam-and-ketoprofen-did-not-alter-coagulation (20. 1. 2023)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mehmet Nihat Ural *, Kamil Üney
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.