CLINICAL AND DIAGNOSTIC IMAGING FINDINGS IN A BENGAL TIGER (Panthera tigris tigris) WITH CRANIOCERVICAL ARTERY DISSECTION: A CASE REPORT
Clinical findings of craniocervical artery dissection
DOI:
https://doi.org/10.26873/SVR-1694-2023Keywords:
Bergeyella zoohelcum, ischemic stroke, subarachnoid haemorrhage, tiger, transient ischemic attackAbstract
This study aims to examine different aspects of Craniocervical Artery Dissections, which resulted in the animal’s death following a sequence of pathological events. Following the physical damage to the female Siberian tiger neck due to the Agonistic behaviour of the male tiger, diagnostic tests such as complete medical examination, Time-of-Flight (TOF) MRA imaging and radiography, as well as sampling for clinical assessment, haematology, microbial culture, and antibiogram was performed, initial treatment was prescribed, and PCR was performed. Unfortunately, the Medical treatment measures were inadequate, and the animal died. Therefore, necropsy, histopathological examination, and immunohistochemistry staining were performed. The results of the microbiological study included the identification of Bergeyella zoohelcum for the first time in this animal species, as well as diagnostic findings; necropsy and histological examinations, including aneurysm, subarachnoid haemorrhage, and ischemic stroke, were provided as well as Horner’s intramural hematoma and rupture of the carotid arteries and internal jugular vein, which has never been described before. Whole-body trauma computed tomography with an adapted scanning protocol for the craniocervical vessels is a safe, fast, and feasible method for detecting vascular injuries. It allows prompt further treatment if necessary. This method could be a part of a broad screening protocol for craniocervical vessels in documented injuries of the head and neck and trauma mechanisms influencing the craniocervical region as well.
Klinične in diagnostične slikovne ugotovitve pri bengalskem tigru (Panthera tigris tigris) z disekcijo kraniocervikalne arterije: Poročilo o primeru
Izvleček: Namen te študije je bil preučiti različne vidike disekcij kraniocervikalnih arterij, ki so po zaporedju patoloških dogodkov povzročile smrt živali. Po fizičnih poškodbah vratu samice sibirskega tigra, ki so bile posledica agonističnega vedenje samca tigra, smo opravili diagnostične teste, ki so vključevali popolni zdravniški pregled, slikanje MRA s časom leta (TOF) in radiografijo. Vzeli smo tudi vzorce za klinično oceno, hematologijo, mikrobiološko kulturo in antibiogram. Predpisali smo začetno zdravljenje in izvedli PCR. Na žalost so bili ukrepi zdravljenja neustrezni in žival je poginila. Zato smo opravili nekropsijo, histopatološki pregled in imunohistokemično barvanje. Rezultati mikrobiološke preiskave so vključevali prvo identifikacijo bakterije Bergeyella zoohelcum pri tej vrsti živali. Diagnostične ugotovitve na podlagi nekropsije in histoloških preiskav so vključevale anevrizmo, subarahnoidalno krvavitev, ishemično kap ter Hornerjev intramuralni hematom, rupturo karotidnih arterij in notranje jugularne vene, kar še ni bilo opisano. Računalniška tomografija celotnega telesa s prilagojenim protokolom slikanja kraniocervikalnih žil je varna, hitra in izvedljiva metoda za odkrivanje poškodb žil. Ta metoda bi lahko bila del širšega presejalnega protokola za kraniocervikalne žile pri dokumentiranih poškodbah glave in vratu ter mehanizmih poškodb, ki vplivajo tudi na kraniocervikalno področje.
Ključne besede: Bergeyella zoohelcum; ishemična kap; subarahnoidalna krvavitev; tiger; prehodni ishemični napad
References
● 1. Shi C, Xu J, Roberts NJ, Liu D, Jiang G. Individual automatic detection and identification of big cats by combining different body parts. Integr Zool 2023; 18: 157–68.
● 2. Xu X, Dong GX, Hu XS, et al. The genetic basis of white tigers. Curr Biol 2013; 23: 1031–5.
● 3. Xu X, Luo SJ. How the white tiger lost its colour but kept its stripes. Sci China Life Sci 2014; 57: 1041–3.
● 4. Marsh SME, Hoffmann M, Burgess ND, et al. Prevalence of sustainable and unsustainable use of wild species inferred from the IUCN Red List of Threatened Species. Conserv Biol. 2022; 36: e13844. doi: 10.1111/cobi.13844.
● 5. Bachmann ME, Kulik L, Gatiso T, et al. Analysis of differences and commonalities in wildlife hunting across the Africa-Europe South-North gradient. PLoS Biol 2022; 20: e3001707. doi: 10.1371/journal.pbio.3001707
● 6. Robinson HS, Goodrich JM, Miquelle DG, Miller CS, Seryodkin IV. Mortality of Amur tigers: the more things change, the more they stay the same. Integr Zool 2015; 10: 344–53.
● 7. Nash M, Rafay MF. Craniocervical arterial dissection in children: pathophysiology and management. Pediatr Neurol 2019; 95: 9–18.
● 8. Liu Y, Li S, Wu Y, et al. The added value of vessel wall MRI in the detection of intraluminal thrombus in patients suspected of craniocervical artery dissection. Aging Dis 2021; 1; 12: 2140–50.
● 9. Hakimi R, Sivakumar S. Imaging of carotid dissection. Curr Pain Headache Rep 2019;23: e2. doi: 10.1007/s11916-019-0741-9
● 10. Poledník I, Sulzenko J, Widimsky P. Risk of a coronary event in patients after ischemic stroke or transient ischemic attack. Anatol J Cardiol 2021; 25: 152–5.
● 11. Murala S, Nagarajan E, Bollu PC. Infectious causes of stroke. J Stroke Cerebrovasc Dis 2022; 31: e106274. doi: 10.1016/j.jstrokecerebrovasdis.2021.106274.
● 12. Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in neurovascular damage and repair following schaemic stroke. Int J Mol Sci 2021; 22: e4280. doi: 10.3390/ijms22084280.
● 13. Clark M, Unnam S, Ghosh S. A carotid and vertebral artery dissection review. Br J Hosp Med 2022; 83:1–11.
● 14. Xia H, Wu Y, Zhao J, et al. The aberrant cross-talk of epithelium-macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol Toxicol. 2022; 38: 167–83.
● 15. Broekx S, Houben R, Stockx L, et al. The external carotid artery as a rare feeder of a spinal dural arteriovenous fistula causing cervical myelopathy: a literature review. Brain Spine 2021: 28; 1: e100299. doi: 10.1016/j.bas.2021.100299.
● 16. Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunohistological and inflammatory roles. Int Rev Immunol 2022; 41:253–74. doi: 10.1080/08830185.2021.1921174.
● 17. Yao J, Bai T, Yang B, Sun L. The diagnostic value of D-dimer in acute aortic dissection: a meta-analysis. J Cardiothorac Surg 2021; 16: e343. doi: 10.1186/s13019-021-01726-1.
● 18. Koch V, Biener M, Müller-Hennessen M, et al. Diagnostic performance of D-dimer predicting venous thromboembolism and acute aortic dissection. Eur Heart J Acute Cardiovasc Care 2021; 10: 559–66. doi: 10.1177/2048872620907322.
● 19. Garner M, Yilmaz U, Behnke S. Spontane Dissektionen der hirnversorgenden Arterien. Radiologe 2021;61: 729–35.
● 20. Janská K, Bodnár R, Janský P, Vosko M. Intravenous thrombolytic therapy for acute nonarteritic central retinal artery occlusion. A review. Cesk Slov Oftalmol 2022; 78: 101–9.
● 21. Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. JAMA 2021 ; 325: 1088–98.
● 22. Bhatia K, Jain V, Aggarwal D, et al. Dual antiplatelet therapy versus aspirin in patients with stroke or transient ischemic attack: meta-analysis of randomized controlled trials. Stroke 2021; 52: e217–e23. doi: 10.1161/STROKEAHA.120.033033.
● 23. Hogan DF. Feline cardiogenic arterial thromboembolism: prevention and herapy. Vet Clin North Am Small Anim Pract 2017; 47: 1065–82.
● 24. Rosati LM, Vezzetti A, Redd KT, et al. Early anticoagulation or antiplatelet therapy is critical in craniocervical artery dissection: results from the COMPASS registry. Cerebrovasc Dis 2020; 49: 369–74.
● 25. Lo ST, Walker AL, Georges CJ, Li RH, Stern JA. Dual therapy with clopidogrel and rivaroxaban in cats with thromboembolic disease. J Feline Med Surg. 2022; 24: 277–83.
● 26. Birkbeck R, Humm K, Cortellini S. A review of hyperfibrinolysis in cats and dogs. J Small Anim Pract 2019; 60: 641–55.
● 27. Saw J, Humphries K, Aymong E, et al. Spontaneous coronary artery dissection: clinical outcomes and risk of recurrence. J Am Coll Cardiol 2017; 70: 1148–58.
● 28. Xu D, Wu Y, Li J, et al. Retrospective comparative analysis of clinical and imaging features of craniocervical artery dissection: spontaneous CAD vs. minor traumatic CAD. Front Neurol 2022; 13: e836997. doi: 10.3389/fneur.2022.836997.
● 29. Vezzetti A, Rosati LM, Lowe FJ, et al. Stenting as a treatment for craniocervical artery dissection: improved paramount adverse cardiovascular event-free survival. Catheter Cardiovasc Interv 2022; 99: 134–9.
● 30. Chen Y, Liao K, Ai L, et al. Bacteremia caused by Bergeyella zoohelcum in an infective endocarditis patient: case report and review of the literature. BMC Infect Dis 2017; 17: e271. doi: 10.1186/s12879-017-2391-z.
● 31. Muramatsu Y, Haraya N, Horie K, et al. Bergeyella zoohelcum isolated from oral cavities of therapy dogs. Zoonoses Public Health. 2019; 66: 936–42.
● 32. Lorenzo de Arriba M, Lopez-Serrano S, Galofre-Mila N, Aragon V. Characterisation of Bergeyella spp. isolated from the nasal cavities of piglets. Vet J 2018; 234: 1–6.
● 33. Yi J, Humphries R, Doerr L, Jerris RC, Westblade LF. Bergeyella zoohelcum associated with abscess and cellulitis after a dog bite. Pediatr Infect Dis J 2016; 35: 214–6.
● 34. Sharma S, Salazar H, Sharma S, Nasser MF, Dahdouh M. Bergeyella zoohelcum bacteremia from therapy dog kisses. Cureus 2019; 11: e4494. doi:10.7759/cureus.4494.
● 35. Zamora L, Domínguez L, Fernández-Garayzábal JF, Vela AI. Bergeyella porcorum sp. nov., isolated from pigs. Syst Appl Microbiol 2016; 39: 160–3.
● 36. Tomida J, Fujiwara N, Naka T, et al. Spodiobacter cordis gen. nov. sp. nov., a member of the family Flavobacteriaceae isolated from patients with infective endocarditis. Microbiol Immunol 2019; 63: 111–8.
● 37. Goldstein EJC, Citron DM, Tyrrell KL, Leoncio ES. In vitro activity of Pexiganan and 10 comparator antimicrobials against 234 isolates, including 93 Pasteurella Species and 50 anaerobic bacterial isolates recovered from animal bite wounds. Antimicrob Agents Chemother 2017; 61: e00246-17. doi: 10.1128/AAC.00246-17.
● 38. Harsent R, Macleod J, Rowlands RS, Smith PM, Rushmere N, Blaxland J. The identification of multidrug-resistant microorganisms, including Bergeyella zoohelcum, acquired from the skin/prosthetic interface of amputees and their susceptibility to Medihoney™ and garlic extract (Allicin). Microorganisms 2022 ; 10: e299. doi: 10.3390/microorganisms10020299.
● 39. Krumbeck JA, Reiter AM, Pohl JC, et al. Characterization of oral microbiota in cats: novel insights on the potential role of fungi in feline chronic gingivostomatitis. Pathogens 2021; 10: e904. doi: 10.3390/pathogens10070904.
● 40. Fajardo C, Martín C, Costa G, et al. Assessing the role of polyethene microplastics as a vector for organic pollutants in soil: ecotoxicological and molecular approaches. Chemosphere 2022; 288: e132460. doi: 10.1016/j.chemosphere.2021.132460.
● 41. Proverbio D, Perego R, Baggiani L, Ravasio G, Giambellini D, Spada E. Hematological and biochemical reference values in healthy captive tigers (Panthera tigris). Animals (Basel) 2021; 11: e3440. doi: 10.3390/ani11123440.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Peyman Mohammad Zadeh *, Nilufar Shadan, Sajjad Mohammadi, Fatemeh Najafi, Aida Bashiri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.