INFLUENCE OF FEED RESTRICTION AND ZINC OXIDE NANOPARTICLES SUPPLEMENTATION ON GROWTH PERFORMANCE, BLOOD BIOCHEMISTRY, INTESTINAL MORPHOLOGY AND CECAL FERMENTATION PARAMETERS OF GROWING RABBITS

Authors

  • Karima El-Naggar Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Egypt https://orcid.org/0000-0002-7847-7613
  • Abeer M. El-Shenawy Unit of Biochemistry, Nutritional Deficiency diseases and Toxicology, Animal Health Research Institute, Kafr El-Sheikh Branch, Agricultural Research Center, Egypt
  • Sabreen E. Fadl Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Egypt

DOI:

https://doi.org/10.26873/SVR-1564-2023

Keywords:

feed restriction, growth, rabbits, Zn oxide nanoparticles

Abstract

The present study investigated the response of growing rabbits in terms of growth performance, serum biochemical, intestinal morphology, and caecal fermentation parameters to feed restriction and zinc oxide nanoparticles (ZnO-NPs) supplementation. A total of 60 New Zealand male rabbits were randomly distributed into 6 groups: AL-0 (fed ad libitum + fresh water as control); AL-15 and AL-30 (ad libitum + water supplemented with ZnO-NPs in water, 15 and 30 mg/L, respectively); and R-0, R-15 and R-30 were the same as the first 3 groups but with restricted feeding regime. Rabbits fed ad libitum and supplemented with ZnO-NPs (15 mg/L) showed the highest body weight with no significant difference from AL- fed groups or R-0. Feed conversion ratio (FCR) showed no difference among the different experimental groups (P > 0.05). ZnO-NPs supplementation reduced the serum lipid profile parameters, catalase enzyme in R-30, superoxide dismutase in AL-15 and AL-30 while increased serum malondialdehyde (MDA) in both ad libitum and restricted rabbits. ZnO-NPs administration resulted in lower caecal ammonia in AL-30 compared to its control (AL-0) as well as the content of individual volatile fatty acids (VFAs) (acetate, butyrate and propionate) (P < 0.05). Ileum morphological parameters (mucosal length, villi length, and goblet cell number) were modified in response to the feed restriction and ZnO-NPs addition. In conclusion, feed restriction program applied in this experiment altered rabbit growth performance (final body weight and weight gain with no differences in FCR), improved ileum morphology while had no significant effect on caecal fermentation (VFAs profile) or microbiological parameters. ZnO-NPs supplementation in both levels (15 and 30 mg/L) differently modulated serum lipid profile, antioxidant enzymes and MDA, VFAs profile in cecum and ileal morphology with no differences in rabbit growth performance.

VPLIV OMEJITVE KRME IN DODAJANJA NANODELCEV CINKOVEGA OKSIDA NA RASTNO ZMOGLJIVOST, BIOKEMIJO KRVI, ČREVESNO MORFOLOGIJO IN PARAMETRE CEKALNE FERMENTACIJE RASTOČIH KUNCEV

Izvleček: V tej študiji smo proučevali odziv rastočih kuncev na omejitev krme in dodajanje nanodelcev cinkovega oksida (ZnO-NP) v okviru uspešnosti rasti, biokemičnih parametrov v serumu, morfologije črevesja in fermentacije v slepem črevesu. Skupno 60 samcev novozelandskih kuncev je bilo naključno razdeljenih v 6 skupin: AL-0 (krmljenje ad libitum + sladka voda kot kontrola); AL-15 (krmljenje ad libitum + voda z dodatkom 15 mg/l ZnO-NP) in AL-30 (krmljenje ad libitum + voda z dodatkom 30 mg/l ZnO-NP). Skupine R-0, R-15 in R-30 so bile enake prvim trem, vendar z omejenim režimom krmljenja. Kunci, hranjeni ad libitum z dodatkom ZnO-NP (15 mg/L), so imeli največjo telesno maso brez statistično značilnih razlik v primerjavi s skupinami AL-0, AL-30 in R-0. Razmerje pretvorbe krme (FCR) se med različnimi poskusnimi skupinami ni razlikovalo (P > 0,05). Dodajanje ZnO-NP je vplivalo na zmanjšanje parametrov lipidnega profila v serumu, tj. encim katalaza pri R-30 in superoksid dismutaza pri AL-15 in AL-30, medtem ko se je vsebnost serumskega malondialdehida (MDA) povečala tako pri kuncih, krmljenih ad libitum, in kuncih z omejenim režimom krmljenja. Dajanje ZnO-NP je pri AL-30 v primerjavi s kontrolo (AL-0) povzročilo znižanje vsebnosti amonijaka v slepem črevesu ter vsebnosti posameznih hlapnih maščobnih kislin (acetata, butirata in propionata) (P < 0,05). Kot odgovor na omejitev krme in dodajanje ZnO-NP so se spremenili morfološki parametri ileuma (dolžina sluznice, dolžina resic in število čašastih celic).

Ključne besede: omejitev krme; rast; kunci; nanodelci Zn oksida

References

● 1. Lallès J-P, Boudry G, Favier C, et al. Gut function and dysfunction in young pigs: physiology. Anim Res 2004; 53: 301–16.

● 2. Gidenne T, Combes S, Fortun-Lamothe L. Feed intake limitation strategies for the growing rabbit: effect on feeding behaviour, welfare, performance, digestive physiology and health: a review. Animal 2012; 6: 1407–19.

● 3. Gidenne T, Combes S, Feugier A, et al. Feed restriction strategy in the growing rabbit. 2. Impact on digestive health, growth and carcass characteristics. Animal 2009; 3: 509–15.

● 4. Tumova E, Skrivanova V, Zita L, Zita L, Skrivan M, Fučikova A.The effect of restriction on digestibility of nutrients, organ growth and blood picture in broiler rabbits . In: Proceeding of 8th World Rabbit Congress. Puebla: World Rabbit Science Association, 2004: 1008–14.

● 5. Meo D, Bovera F, Marono S, Vella N, Nizza A. Effect of feed restriction on performance and feed digestibility in rabbits. Ital J Anim Sci 2007; 6(suppl. 1): 765–7.

● 6. Boisot P, Licois D, Gidenne T. Feed restriction reduce the sanitary impact of an experimental reproduction of Epizootic Rabbit Enteropathy syndrome (ERE) in the growing rabbit. In: 10èmes Journées de la Recherche Cunicole. Paris: Institut National de la Recherche Agricole, 2003: 267–70 .

● 7. Knudsen C, Combes S, Briens C, et al. Increasing the digestible energy intake under a restriction strategy improves the feed conversion ratio of the growing rabbit without negatively impacting the health status. Livest Sci 2014; 169: 96–105.

● 8. Maertens L. Rabbit nutrition and feeding: a review of some recent developments. J Appl Rabbit Res 1992; 15: 889–913.

● 9. Evenson DP, Emerick RJ, Jost LK, Kayongo-Male H, Stewart SR. Zinc-silicon interactions influencing sperm chromatin integrity and testicular cell development in the rat as measured by flow cytometry. J Anim Sci 1993; 71: 955–62.

● 10. Gaither LA,Eide DJ. Eukaryotic zinc transporters and their regulation. Biometals 2001; 14: 251–70.

● 11. El Hendy HA, Yousef MI,Abo El-Naga NI. Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc, copper, and iron in growing rats. Toxicology 2001; 167: 163–70.

● 12. MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr 2000; 130(suppl.): 1500S–8S.

● 13. Gao X, Matsui H. Peptide-based nanotubes and their applications in bionanotechnology. Adv Mater 2005; 17: 2037–50.

● 14. Davda J,Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002; 233: 51–9.

● 15. Tag-El Din NTH. Effects of dietary Nano-zinc and Nano-selenium addition on productive and physiological performance of growing rabbits at fattening peroid. Egypt J Nutr Feeds 2019; 22: 79–89.

● 16. Hassan F, Mahmoud R, El-Araby I. Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Vet J 2017; 45: 238–49.

● 17. Yang ZP,Sun LP. Effects of nanometre ZnO on growth performance of early weaned piglets J Shanxi Agric Sci 2006; 3: 74–6.

● 18. Mahmoud UT, Abdel-Mohsein HS, Mahmoud MAM, et al. Effect of zinc oxide nanoparticles on broilers’ performance and health status. Trop Anim Health Prod 2020; 52: 2043–54.

● 19. El-Katcha M, Soltan M, Arafa M, El-Naggar K, Kawarei E. Impact of dietary replacement of inorganic zinc by organic or nano sources on productive performance, immune response and some blood biochemical constituents of laying hens. Alex J Vet Sci 2018; 59: 48–59.

● 20. Birolo M, Trocino A, Zuffellato A, Xiccato G.. Effect of feed restriction programs and slaughter age on digestive efficiency, growth performance and body composition of growing rabbits. Anim Feed Sci Technol 2016; 222: 194–203.

● 21. Blas C,Wiseman J, eds. Nutrition of the rabbit. 2nd ed. Wallingford: CAB International, 2010.

● 22. Hand NM. Plastic embedding for light microscopy. In: Suvarna SK, Layton C, Bancroft JD eds. Bancroft’s theory and practice of histological techniques. 7th ed. London: Elsevier, 2013: 139–55.

● 23. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004; 11: 36–42.

● 24. Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult Sci 2007; 86: 309–17.

● 25. Bivolarski B, Beev G, Denev S, Vachkova E. Development of the caecal microbiota in rabbits weaned at different age. Agric Sci Technol 2011; 3: 212–9.

● 26. Alvarenga IC, Aldrich CG, Kohles M. The effect of feed form on diet digestibility and cecal parameters in rabbits. Animals 2017; 7: e95. doi: 10.3390/ani7120095

● 27. Yakubu A, Salako AE, Ladokun AO, Adua M, Bature TUK. Effects of feed restriction on performance, carcass yield, relative organ weights and some linear body measurements of weaner rabbits. Pakistan J Nutr 2007; 6: 391–6.

● 28. Esonu BO, Iheukwumere FC, Emenalom O, Uchegbu M, Etuk E. Performance, nutrient utilisation and organ characteristics of broilers fed Microdesmis puberula leaf meal. Livest Res Rural Dev 2002; 14: 14–9.

● 29. Tumova E, Skrivanova V, Skrivan M. Effect of restricted feeding time and quantitative restriction in growing rabbits. Arch Geflugelk 2003; 67: 182–90.

● 30. El-Speiy ME, Kamel KI, El-Din AET, et al. Effect of feed restriction on productive performance, carcass yield, blood parameters and relative organ weights of growing rabbits. Egypt Poult Sci 2015; 35: 439–54 .

● 31. Archetti I, Titterelli C, Cerioli M, Brivio R, Grilli G, Lavazza A. Serum chemistry and haematology values in commercial rabbits: preliminary data from industrial farms in northern Italy. In: Proceedings of 9th World Rabbit Congress. Verona: World Rabbit Science Association, 2008.

● 32. Li MZ, Huang JT, Tsai YH, Mao SY, Fu CM, Lien TF. Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim Sci J 2016; 87: 1379–85.

● 33. El-Katcha M, Soltan MA, El-Badry M. Effect of dietary replacement of inorganic zinc by organic or nanoparticles sources on growth performance, immune response and intestinal histopathology of broiler chicken. Alex J Vet Sci 2017; 55: 129–45.

● 34. Van Harten S, Cardoso LA. Feed restriction and genetic selection on the expression and activity of metabolism regulatory enzymes in rabbits. Animal 2010; 4: 1873–83.

● 35. Ebeid T, Tůmová E, Volek Z. Effects of a one week intensive feed restriction in the growing rabbit: part 1 - Performance and blood biochemical parameters. In: Proceedings of the 10th World Rabbit Congress. Sharm El-Sheikh: World Rabbit Science Association, 2012: 606–11.

● 36. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 2009; 185: 211–8.

● 37. Ismail HTH, El-Araby IE. Effect of dietary Zinc oxide nanoparticles supplmentation on biochemical, hematological and genotoxicity parameters in rabbits. Int J Curr Adv Res 2017; 6(2): 2108–15.

● 38. Powell SR. The Antioxidant Properties of Zinc. J Nutr 2000; 130(suppl.): 1447S–54S.

● 39. Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants 2019; 8: e235. doi: 10.3390/antiox8070235

● 40. Fazilati M. Investigation toxicity properties of zinc oxide nanoparticles on liver enzymes in male rat. European J Exp Biol 2013; 3: 97–103.

● 41. Peris SIE, Abd El-Latif KM. Effect of feed restriction on growth performance, carcass traits, and some hematological and blood biochemical parameters in growing rabbits. Anim Biotechnol 2023; 34: 67–76.

● 42. Al-Daraji HJ , Amen MHM. Effect of dietary zinc on certain blood traits of broiler breeder chickens. Int J Poult Sci 2011; 10: 807–13.

● 43. Gidenne T. Estimation of volatile fatty acids and of their energetic supply in the rabbit caecum: effect of the dietary fibre level. In: VIème Journées de la Recherche. Paris, 1994.

● 44. Chrastinová Ľ, Čobanová K, Chrenková M, et al. Effect of dietary zinc supplementation on nutrients digestibility and fermentation characteristics of caecal content in physiological experiment with young rabbits. Slovak J Anim Sci 2016; 49: 23–31.

● 45. Martignon MH, Combes S, Gidenne T. Digestive physiology and hindgut bacterial community of the young rabbit (Oryctolagus cuniculus): effects of age and short-term intake limitation. Comp Biochem Physiol A Mol Integr Physiol 2010; 156: 156–62.

● 46. Michelland RJ, Combes S, Monteils V, Cauquil L, Gidenne T, Fortun-Lamothe L. Molecular analysis of the bacterial community in digestive tract of rabbit. Anaerobe 2010; 16: 61–5.

● 47. Diao H, Yan J, Li S, et al. Effects of dietary zinc sources on growth performance and gut health of weaned piglets. Front Microbiol 2021; 12: e771617. doi:10.3389/fmicb.2021.771617

● 48. Arabi F, Imandar M, Negahdary M, et al. Investigation antibacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann Biol Res 2012; 7: 3679–85.

● 49. Makovicky P, Tumova E, Volek Z, Makovicky P, Vodicka P. Histological aspects of the small intestine under variable feed restriction: the effects of short and intense restriction on a growing rabbit model. Exp Ther Med 2014; 8: 1623–7.

● 50. Tůmová E, Volek Z, Makovický P, Chodova D. Effects of one week feed restriction in the growing rabbit part 2: developpment of the digestive system. In: Proceedings of the 10th World Rabbit Congress. Sharm El-Sheikh: World Rabbit Science Association, 2012: 621–4.

● 51. de Oliveira MC, da Silva DM, Dias DMB. Effect of feed restriction on organs and intestinal mucosa of growing rabbits. Rev Bras Zootec 2013; 42: 530–4.

● 52. Dou Y, Gregersen S, Zhao J, Zhuang F, Gregersen H. Effect of re-feeding after starvation on biomechanical properties in rat small intestine. Med Eng Phys 2001; 23: 557–66.

● 53. Izadi H, Arshami J, Golian A, Raji MR. Effects of chicory root powder on growth performance and histomorphometry of jejunum in broiler chicks. Vet Res Forum 2013; 4: 169–74.

● 54. De Queiroz CAA, Fonseca SGC, Frota PB, et al. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats. BMC Gastroenterol 2014; 14: e136.

doi: 10.1186/1471-230X-14-136

● 55. Liu P, Pieper R, Rieger J, et al. Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets. PloS One 2014; 9: e91091.doi: 10.1371/journal.pone.0091091

Downloads

Published

2023-07-11

How to Cite

El-Naggar, K., El-Shenawy, A. M., & Fadl, S. E. (2023). INFLUENCE OF FEED RESTRICTION AND ZINC OXIDE NANOPARTICLES SUPPLEMENTATION ON GROWTH PERFORMANCE, BLOOD BIOCHEMISTRY, INTESTINAL MORPHOLOGY AND CECAL FERMENTATION PARAMETERS OF GROWING RABBITS . Slovenian Veterinary Research, 60(3), 135–47. https://doi.org/10.26873/SVR-1564-2023

Issue

Section

Original Research Article