CHARACTERISATION OF THE HAEMATOLOGICAL PROFILE IN THE POSAVJE HORSE BREED
DOI:
https://doi.org/10.26873/SVR-1508-2023Keywords:
autochthonous breeds, Posavje horse, haematology, age, sexAbstract
The aim of this study was to investigate the influences of sex and age on haematological values in the Posavje Horse breed. A total of 163 healthy Posavje horses (30 foals, 94 mares and 39 stallions) were used in this study; their complete blood counts and a leucogram were obtained with a haematological analyser. The horses were classified into five groups: foals (1 to 6 months, n = 30), 3 to 6 years (n = 8 stallions/21 mares), 7 to 9 years (n = 9 stallions/22 mares), 10 to 13 years (n = 8 stallions/20 mares), 14 to 15 years (n = 6 stallions/10 mares) and 16 and over (n = 8 stallions/21 mares). The results obtained show an influence of sex on haematological parameters, with red blood cell count (RBC), haematocrit (HCT) and haemoglobin concentration (HGB) being higher in stallions (P < 0.001) and white blood cell count (WBC) being higher in mares. Differences between the age groups of the Posavje horses examined indicate a decrease in RBC and HGB with a compensatory increase in mean corpuscular volume and mean corpuscular haemoglobin, a decrease in WBC and platelet counts (PLT) and proportion of lymphocytes, and an increase of neutrophil to lymphocyte ratio (N/L) with age (P < 0.001). Although the Posavje horse is classified as a draft horse breed, its haematological parameters show characteristics common to warm-blooded breeds, with the exception of the N/L ratio. One of the most important findings of this study is a higher neutrophil count in reproductively active breeding stallions. Higher levels of RBC, HGB, HCT and neutrophil count in the Posavje stallions suggest an effect of androgens (testosterone), which may be an effective mechanism to prevent infections, that can affect the survival of the stallions and thus the evolution of the species.
KARAKTERIZACIJA HEMATOLOŠKEGA PROFILA PRI POSAVSKEM KONJU
Izvleček: Cilj raziskave je bil proučiti vpliv spola in starosti na hematološke parametre pri pasmi posavski konj. V raziskavo je bilo vključenih 163 konj posavske pasme (30 žrebet, 94 kobil in 39 žrebcev), pri katerih smo v vzorcih krvi določali hematološke parametre s hematološkim analizatorjem. Diferencialna bela krvna slika in razmerje med nevtrofilci in limfociti (N/L) je bilo določeno na krvnih razmazih. Konje smo razdelili v pet starostnih skupin: žrebeta (od 1 do 6 mesecev, n = 30), 3 do 6 let (n = 8 žrebcev/21 kobil), 7 do 9 let (n = 9 žrebcev/22 kobil), 10 do 13 let (n = 9 žrebcev/20 kobil), 14 do 15 let (n = 6 žrebcev/10 kobil) ter 16 in več let (n = 8 žrebcev/21 kobil). Rezultati naše raziskave kažejo vpliv spola na preiskovane hematološke parametre; pri žrebcih so število rdečih krvnih celic (RBC), hematokrit (HCT) in koncentracija hemoglobina (HGB) značilno višji (P < 0,001), pri kobilah pa je višje število belih krvnih celic (WBC). Med starostnimi skupinami posavskih konj smo ugotovili zmanjšanje RBC in HGB in posledično kompenzacijo s povečanjem povprečnega volumna in hemoglobina eritrocitov, zmanjšanjem števila levkocitov, trombocitov (PLT) in limfocitov ter povečanjem razmerja med nevtrofilci in limfociti (N/L) s starostjo (P < 0,001). Posavski konj po zunanjosti spada med hladnokrvne konje, v raziskavi ugotovljeni hematološki profil pa kaže značilnosti, ki so skupne toplokrvnim pasmam konj, z izjemo razmerja N/L. Ena od pomembnejših ugotovitev te študije je večje število nevtrofilcev pri aktivnih plemenskih žrebcih. Višje vrednosti RBC, HGB, HCT in števila nevtrofilcev pri posavskih žrebcih kažejo učinek androgenov (testosterona), kar bi lahko bil učinkovit mehanizem za preprečevanje okužb, ki lahko vplivajo na preživetje žrebcev in s tem na evolucijo vrste.
Ključne besede: avtohtone pasme; posavski konj; hematologija; starost; spol
References
● 1. Conroy M, Brodbelt DC, O'Neill D, Chang YM, Elliott J. Chronic kidney disease in cats attending primary care practice in the UK: a VetCompass (TM) study. Vet Rec 2019; 184(17): e526. Available from: doi: 10.1136/vr.105100
● 2. O'Neill DG, Church DB, McGreevy PD, et al. Prevalence of disorders recorded in cats attending primary-care veterinary practices in England. Vet J 2014; 202: 286−91.
● 3. Lulich JP, Osborne CA, O'Brien TD, Polzin DJ. Feline renal failure: questions, answers, questions. Compend Contin Educ Pract Vet 1992; 14(2): 127−52.
● 4. Bartlett PC, Van Buren JW, Bartlett AD, Zhou C. Case-control study of risk factors associated with feline and canine chronic kidney disease. Vet Med Int 2010; 2010: e957570. doi: 10.4061/2010/957570
● 5. SDMA impacts how veterinarians diagnose and manage kidney disease in dogs and cats. IDEXX, c2015 [homepage on the internet] http://www.idexx.com.jp/pdf/jp/smallanima/reference-laboratories/sdma-data-white-paper-pages.pdf.
● 6. Polzin DJ. Chronic kidney disease. In: Ettinger SJ, Feldman EC, eds. Textbook of veterinary internal medicine. 7th ed. St Louis, MO: Saunders, 2010: 2036–67.
● 7. Ross SJ, Osborne CA, Kirk CA, et al. Clinical evaluation of dietary modification for treatment of spontaneous chronic kidney disease in cats. J Am Vet Med Assoc 2006; 229: 949–57.
● 8. Plantinga EA, Everts H, Kastelein AM, et al. Retrospective study of the survival of cats with acquired chronic renal insufficiency offered different commercial diets. Vet Rec 2005; 157: 185–7.
● 9. Syme HM, Markwell PJ, Pfeiffer D, et al. Survival of cats with naturally occurring chronic renal failure is related to severity of proteinuria. J Vet Intern Med 2006; 20: 528−35.
● 10. King JN, Tasker S, Gunn-Moore DA, et al. Prognostic factors in cats with chronic kidney disease. J Vet Intern Med 2007; 21: 906−16.
● 11. Kuwahara Y, Ohba Y, Kitoh K., Kuwahara N, Kitagawa H. Association of laboratory data and death within one month in cats with chronic renal failure. J Small Anim Pract 2006; 47: 446−50.
● 12. McLeland SM, Cianciolo RE, Duncan CG, Quimby JM. A Comparison of biochemical and histopathologic staging in cats with chronic kidney disease. Vet Pathol 2015; 52(3): 524−34.
● 13. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol 2019; 34: 975−91.
● 14. Galle J. Oxidative stress in chronic renal failure. Nephrol Dial Transplant 2001; 16: 2135–7.
● 15. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, et al.. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic. Biol Med 1996; 21(6): 845−53.
● 16. Zachara B, Gromadzinska J, Wasowicz W, Zbrog Z. Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim Pol 2006; 53(4): 663−77.
● 17. Krofič Žel M, Tozon N, Nemec Svete A. Plasma and erythrocyte glutathione peroxidase activity, serum selenium concentration, and plasma total antioxidant capacity in cats with IRIS stages I-IV chronic kidney disease. J Vet Intern Med 2014; 28(1): 130−6.
● 18. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: e360438. doi: 10.1155/2014/360438
● 19. Holben DH, Smith AM. The diverse role of selenium with selenoproteins: a review. J Am Diet Assoc 1999; 99: 836−43.
● 20. Polzin DJ. Evidence-based step-wise approach to managing chronic kidney disease in dogs and cats. J Vet Emerg Crit Care 2013; 23(2): 205–15.
● 21. Elliott J, Rawlings JM, Markwell PJ, et al. Survival of cats with naturally occuring chronic renal failure: effect of dietary management. J Small Anim Pract. 2000; 41: 235–42.
● 22. Ross SJ, Osborne CA, Kirk CA, Lowry SR, Koehler LA, Polzin DJ. Clinical evaluation of dietary modification for treatment of spontaneous chronic kidney disease in cats. J Am Vet Med Assoc 2006; 229: 949–57.
● 23. Hall JA, Fritsch DA, Jewell DE, Burris PA, Gross KL. Cats with IRIS stage 1 and 2 chronic kidney disease maintain body weight and lean muscle mass when fed food having increased caloric density, and enhanced concentrations of carnitine and essential amino acids. Vet Rec 2018; 184(6): 190. doi: 10.1136/vr.104865
● 24. Schauf S, Coltherd JC, Atwal J, et al. Clinical progression of cats with early-stage chronic kidney disease fed diet s with varying protein and phosphorus contents and calcium to phosphorus ratios. J Vet Intern Med 2021; 35(6): 2797−811. doi: 10.1111/jvim.16263.
● 25. Keegan RF, Webb CB. Oxidative stress and neutrophil function in cats with chronic renal failure. J Vet Intern Med 2010; 24(3): 514−19.
● 26. Timmons R, Webb CW. Vitamin E supplementation fails to impact measures of oxidative stress or the anemia of feline chronic kidney disease: a randomised, double-blinded placebo control study. Vet Med Sci 2016; 2: 117−24. doi: 10.1002/vms3.21
● 27. Whitehouse W, Quimby J, Wan S, Monaghan K, Robbins R, Trepanier LA. Urinary F 2 -isoprostanes in cats with international renal interest society stage 1–4 chronic kidney disease. J Vet Intern Med 2017; 31(2): 449−56. doi: 10.1111/jvim.14634
● 28. Yu S, Paetau-Robinson I. Dietary Supplements of vitamins E and C and β-carotene reduce oxidative stress in cats with renal insufficiency. Vet Res Commun 2006; 30: 403−13.
● 29. Granick M, Leuin AS, Trepanier LA. Plasma and urinary F2-isoprostane markers of oxidative stress are increased in cats with early (stage 1) chronic kidney disease. J Feline Med Surg 2021; 23(8): 692−9.
● 30. Valle E, Prola L, Vergnano D, et al. Investigation of hallmarks of catbonyl stress and formation of end products in feline chronic kidney disease as markers of uraemic toxins. J Feline Med Surg 2019; 21(6): 465−74.
● 31. Intenational Renal Interest Society. IRIS staging of CKD 2019 [internet] http://www.iris-kidney.com/pdf/IRIS_Staging_of_CKD_modified_2019.pdf.
● 32. Ferreira JC, Patino CM. Randomization: beyond tossing a coin. J Bras Pneumol 2016; 42 (5): 310. doi: 10.1590/S1806-37562016000000296
● 33. Czauderna M, Kowalczyk J, Marounek M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879(23): 2251−8.
● 34. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158−69.
● 35. Prieto JM, Carney PC, Miller ML, et al. Biologic variation of symmetric dimethylarginine and creatinine in clinically healthy cats. Vet Clin Pathol 2020; 49(3): 401−6.
● 36. Kopke MA, Burchell RK, Ruaux CG, Burton SE, Lopez-Villalobos N, Gal A. Variability of symmetric dimethylarginine in apparently healthy dogs. J Vet Intern Med 2018; 32(2): 736−42. doi: 10.1111/jvim.15050
● 37. Mack RM, Hegarty E, McCrann DJ, Michael HT, Grauer GF. Longitudinal evaluation of symmetric dimethylarginine and concordance of kidney biomarkers in cats and dogs. Vet J 2021; 276: e105732. doi: 10.1016/j.tvjl.2021.105732.
● 38. Braff J, Obare E, Yerramilli M, Elliott J, Yerramilli M. Relationship between serum symmetric dimethylarginine concentration and glomerular filtration rate in cats. J Vet Intern Med 2014; 28: 1699−701.
● 39. Foster DJ, Thoday KL, Arthur JR, et al. Selenium status of cats in four regions of the world and comparison with reported incidence of hyperthyroidism in cats in those regions. Am J Vet Res 2001; 62(6): 934−7.
● 40. Todorova I, Simeonova G, Kyuchukova D, et al. Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comp Clin Pathol 2005; 13(4): 190‒4.
● 41. Hall JA, Yerramilli M, Obare E, Yerramilli M, Yu S, Jewell DE. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in healthy geriatric cats fed reduced protein food s enriched with fish oil, L-carnitine, and medium-chain triglycerides. Vet J 2014; 202: 588−96.
● 42. Watson ADJ, Lefebvre HP, Elliott J. Using urine specific gravity, 2015 [internet] http://www.iris-kidney.com/education/urine_specific_gravity.html
● 43. Bradley R, Tagkopoulos I, Kim M, et al. Predicting early risk of chronic kidney disease in cats using routine clinical laboratory tests and machine learning. J Vet Intern Med 2019; 33(6): 2644−56.
● 44. Pelander L, Häggström J, Larsson A, et al. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. J Vet Intern Med 2019; 33(2): 630−9. doi: 10.1111/jvim.15445
● 45. Giraldi M, Paltrinieri S, Scarpa P. Electrophoretic patterns of proteinuria in feline spontaneous chronic kidney disease. J Feline Med Surg 2019; 22(2): 114–21. doi: 10.1177/1098612X1
● 46. Dornelas L, Orozco A, Ramírez López C, et al. Application of serum and urinary electrophoresis as an aid tool for evaluating dogs at different stages of chronic kidney disease. Comp Clin Pathol 2021; 30: e1–11. doi: 10.1007/s00580-021-03231-2
● 47. Markhus MW, Kvestad I, Midtbø LK, et al. Effects of cod intake in pregnancy on iodine nutrition and infant development: study protocol for Mommy’s Food - a randomized controlled trial. BMC Nutr 2018; 4: e7. doi: 10.1186/s40795-018-0215-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 SLOVENIAN VETERINARY RESEARCH

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.