PERFORMANCE AND Nosema spp. SPORE LEVEL IN YOUNG HONEYBEE (Apis mellifera carnica, Pollmann 1879) COLONIES SUPPLEMENTED WITH CANDIES

Authors

  • Maja Ivana Smodiš Škerl
  • Ivana Tlak Gajger

DOI:

https://doi.org/10.26873/SVR-1498-2022

Abstract

We evaluated the efficacy of supplementation with protein, yeast, or sugar candies of young honeybee colonies origi- nated from artificial swarms, by measuring strength and determining Nosema spp. spore level in adult bees in summer period. At the same time, we aimed to assess longevity of adult worker bees after feeding the same type of candies in controlled laboratory condition. The highest survival was found in Yeast and Protein candy group. On the contrary, the field study showed that artificial swarms produced significantly more pupae (2510.4 cm 2 , p=0.0001) in the 1 st period of measurement, and more larvae (964.8 cm 2 , p=0.003) and frames with bees (5.6, p=0.008) in the 2 nd period by feeding non-protein candy. In the 3rd period of evaluation of young colonies, the Sugar candy group had the highest number of frames covered by adult bees and honey stores, respectively (5.6, p=0.0009; 3432.0 cm 2, p=0.015). Sugar candy group produced the largest area of wax cells, however, the differences were not statistically significant. Nosema spp. spore level was checked quantitatively in adult bees. The lowest infection was statistically significant in Yeast candy group in June (4.35 million spores per bee, p=0.02), but insignificant in September. Supplementing artificial swarms Sugar candy offers the most promising potential for development of productive young colony. The findings of our study could help beekeepers to choose the effective candy supplement for optimal development of artificial swarms.

Key words: Apis mellifera; artificial swarms; young colonies; supplements; candies; development; Nosema spp.; longevity

 

RAZVOJ DRUŽIN IN ŠTEVILO SPOR Nosema spp. PRI MLADIH DRUŽINAH MEDONOSNE ČEBELE (Apis mellifera carnica, Pollmann 1879), KRMLJENIH S POGAČAMI

Izvleček: Mlade čebelje družine iz umetnih rojev smo krmili z različnimi pogačami z dodatkom beljakovin, kvasa ali sladkorja. Ocenjevali smo razvoj družin in določali število spor Nosema spp. pri odraslih čebelah v poletnem obdobju. V laboratorijskih pogojih smo krmili čebele delavke z isto vrsto pogač. Najboljše preživetje smo ugotovili v skupinah, ki so prejele pogačo s kvasom oziroma beljakovinami. Nasprotno pa je poskus v družinah pokazal, da je bilo v 1. obdobju merjenja bistveno več bub (2510,4 cm 2 , p = 0,0001), v 2. obdobju pa več ličink (964,8 cm 2 , p = 0,003) in okvirjev s čebelami (5,6, p = 0,008) pri krmljenju s sladkorno pogačo. V 3. obdobju ocenjevanja mladih družin je imela skupina s sladkorno pogačo največ pokritih okvirjev z odraslimi čebelami in zalog medu (5,6, p = 0,0009; 3432,0 cm 2 , p = 0,015). Skupina s sladkorno pogačo je zgradila največjo površino satja, vendar razlike niso bile statistično značilne. Število spor Nosema spp. je bilo kvantitativno preverjeno pri odraslih čebelah. Najnižja okužba je bila statistično značilna v skupini s pogačo s kvasom v juniju (4,35 milijona spor na čebelo, p = 0,02), septembra pa spremembe niso bile signifikantne. Dodajanje sladkorne pogače umetnim rojem se je pokazalo kot najbolj obetavno za razvoj produktivnih mladih čebeljih družin. Ugotovitve naše študije bi lahko pomagale čebelarjem pri izbiri učinkovitega dodatka pogač za optimalen razvoj umetnih rojev.

Ključne besede: Apis mellifera; umetni roji; mlade družine; dodatki; pogače; razvoj; Nosema spp.; dolgoživost

References

● 1. Walther-Hellwig K., Fokul, R.Frankl G., Büchler R., Ekschmitt K., et al. Increased density of honeybee colonies affects foraging bumblebees. Apidologie 2006; 37(5): 517–32.

● 2. Haydak MH. Honey bee nutrition. Ann Rev En-tomol 1970; 15: 143–56.

● 3. DeGroot A. Protein and amino acid require-ments of the honey bee. Physiol Comp Oecol 1953; 3: 197–285.

● 4. Lipinski Z. Honey bee nutrition and feeding, in the temperate/continental climate of the northen he-misphere, Olsztyn: OZGraf S.A., 2018, pp. 430.

● 5. Schmidt JO, Johnson BE. Pollen feeding prefe-rence of Apis mellifera (Hymenoptera: Apidae), a polyec-tic bee. The Southwest Entomol 1984; 9: 41–7.

● 6. Schmidt JO, Thoenes SC, Levin MD. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann Entomol Soc Am 1987; 80: 176–83. doi: 10.1093/aesa/80.2.176

● 7. Schmidt LS, Schmidt JO, Rao H, Wang W, Xu L. Feeding preference of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J Econ Entomol 1995; 88: 1591–95.

● 8. Naug D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv 2009; 142: 2369–72.

● 9. Alaux C, Brunet J-L, Dussaubat C, et al. Interac-tions between Nosema microspores and a neonico-tinoid weaken honeybees (Apis mellifera). Environ Mic-robiol 2010; 12: 774–82. doi:10.1111/j.1462-2920.2009.02123.x

● 10. Dorit A, Hendriksma H, Dag A, Uni Z, Shafir S. Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. J Insect Physiol 2014; 69: 65–73. doi: 10.1016/j.jinsphys.2014.07.001

● 11. Wang H, Zhang S, Zeng Z-J, Yan W-Y. Nutri-tion affects longevity and gene expression in honey bee (Apis mellifera) workers. Apidologie 2014; 45: 618–25. doi:10.1007/s13592-014-0276-3

● 12. Whitcomb W. Feeding bees for comb produc-tion. Gleanings Bee Cult 1946; 74(4): 198–202, 247.

● 13. Behmer S. Insect herbivore nutrient regulation. Annu Rev Entomol 2009; 54: 165–87.

● 14. Raubenheimer D, Simpson SJ. Integrating nu-trition: a geometrical approach. Entomol Exp Appl 1999; 91: 67–82.

● 15. Pirk CWW, Boodhoo C, Human H, Nicolson SW. The importance of protein type and protein to car-bohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apido-logie 2010; 41: 62–72.

● 16. Paoli PP, Donley D, Stabler D, et al. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids 2014; 46(6): 1449–58.

● 17. Dussutour A, Simpson S. Ant workers die young and colonies collapse when fed a high-protein diet. Proc R Soc B Biol Sci 2012; 279: 2402–8. doi:10.1098/rspb.2012.0051

● 18. Archer C, Pirk C, Wright G, Nicolson S. Nutri-tion affects survival in African honeybees (Apis melli-fera scutellata) exposed to interacting stressors. Funct Ecol 2013; 28(4): 913–23. doi: 10.1111/1365-2435.12226

● 19. Jack C, Lucas H, Webster T, Sagili R. Colony level prevalence and intensity of Nosema ceranae in ho-ney bees (Apis mellifera L.). PloS One 2016; 11. e0163522. doi:10.1371/journal.pone.0163522

● 20. Pohl F. Moderne Imkerpraxis: Völkerpflege und Ablegerbildung. Kosmos : Stuttgart, 2010, pp. 128.

● 21. Zander E, Böttcher F K. Haltung und Zucht der Biene. Stuttgart : Ulmer, 1989, pp. 422.

● 22. Williams GR, Alaux C, Costa C, et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apicult Res 2013; 52(1): 1–36. doi: 10.3896/IBRA.1.52.1.04

● 23. Imdorf A, Buehlmann G, Gerig L, Kilchen-mann V, Wille H. A test of the method of estimation of brood areas and number of worker bees in free-flying colonies [Liebefeld method] Apidologie 1987; 18: 137–46. doi: 10.1051/apido:19870204

● 24. Cantwell GE. Standard methods for counting Nosema spores. Am Bee J 1970; 110: 222–3.

● 25. Desai SD, Currie RW. Effects of wintering en-vironment and parasite-pathogen interactions on ho-ney bee colony loss in north temperate regions. PloS One 2016; 11(7): e0159615. doi:10.1371/journal.pone.0159615NLM

● 26. Altaye SZ, Pirk CWW, Crewe RM, Nicolson SW. Convergence of carbohydrate-biased intake tar-gets in caged worker honeybees fed different protein sources. J Exp Biol 2010; 213(19): 3311–8. doi: 10.1242/jeb.046953

● 27. Le Conte Y, Navajas M. Climate change: im-pact on honey bee populations and diseases. OIE Rev Sci Tech 2008; 27: 485–97, 499.

● 28. Ricigliano VA, Mott BM, Floyd AS, et al. Honey bees overwintering in a southern climate: longitudi-nal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep 2018; 8(1): e10475. doi: 10.1038/s41598-018-28732-z

● 29. Wilson Rankin EE, Barney SK, Lozano GE. Reduced water negatively impacts social bee survival and productivity via shifts in floral nutrition, J Insect Sci 2020; 20(5): e15. doi: 10.1093/jisesa/ieaa114.

● 30. Descamps C, Quinet M, Jacquemart AL. Cli-mate change–induced stress reduce quantity and alter composition of nectar and pollen from a bee-pollinated species (Borago officinalis, Boraginaceae). Front Plant Sci 2021; 12: e755843. doi: 10.3389/fpls.2021.755843

● 31. Ziska LH, Pettis JS, Edwards J, et al. Rising at-mospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proc Biol Sci B 2016; 283(1828): e20160414. doi: 10.1098/rspb.2016.0414.

● 32. Castle D, Alkassab AT, Bischoff G, Steffan-Dewenter I, Pistorius J. High nutritional status promo-tes vitality of honey bees and mitigates negative effects of pesticides. Sci Total Environ 2022; 806(4): e151280. doi: 10.1016/j.scitotenv.2021.151280.

● 33. VanEngelsdorp D, Evans JD, Saegerman C, et al. Colony collapse disorder: a descriptive study. PLoS One 2009; 4(8): e6481. doi: 10.1371/journal.pone.0006481.

● 34. Somerville DC. Fat bees, skinny bees. Manual on honey bee nutrition for beekeepers. Kingston : Rural Industries Research and Development Corpora-tion, 2005. RIRDC Publication No. 05/054, 2005. Available at: www.agrifutures.com.au/product/fat-bees-skinny-bees-a-manual-on-honey-bee-nutrition-for-beekeepers/ 20th February 2022)

● 35. Ahmad S, Khan SA, Khan KA, Li J. Novel in-sight into the development and function of hypopharyn-geal glands in honey bees. Front Physiol 2021; 11: e615830. doi: 10.3389/fphys.2020.615830

● 36. Ricigliano VA, Williams ST, Oliver R. Effects of different artificial diets on commercial honey bee co-lony performance, health biomarkers, and gut micro-biota. BMC Vet Res 2022; 18(1): e52. doi: 10.1186/s12917-022-03151-5.

● 37. Klassen SS, VanBlyderveen W, Eccles L, et al. Nosema ceranae infections in honey bees (Apis melli-fera) treated with pre/probiotics and impacts on colonies in the field. Vet Sci 2021; 8(6): e107. doi: 10.3390/vetsci8060107

● 38. Tlak Gajger I, Vlainić JP, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI. Effects on some therape-utical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treat-ments, in field and laboratory conditions. Insects 2020; 11(9): e638. doi: 10.3390/insects11090638.

● 39. Tlak Gajger I, Smodiš Škerl MI, Šoštarić P, Šu-ran J, Sikirić P, Vlainić J. Physiological and immunolo-gical status of adult honeybees (Apis mellifera) fed sugar syrup supplemented with pentadecapeptide BPC 157. Biology 2021; 10(9): e891. doi: 10.3390/biology10090891.

● 40. Stevanovic J, Stanimirović Z, Simeunović P, et al. The effect of Agaricus brasiliensis extract supplemen-tation on honey bee colonies. An Acad Bras Cienc 2018; 90: 219–29.

● 41. Schulz M, Łoś A, Grzybek M, Ścibior R, Stra-checka A. Piperine as a new natural supplement with beneficial effects on the life-span and defence system of honeybees. J Agric Sci 2019; 157(2): 140–9.

● 42. Hussain A, Shehata I, Laban G, Al-Ayat A. In-fluence of feeding on the production of honey bee que-ens during the dearth period under Nasr City con-ditions – Cairo. Al-Azhar J Agric Res 2020; 45(1): 1–7. doi:10.21608/ajar.2020.126605

● 43. Al-Ghamdi AA, Abou-Shaara HF, Ansari MJ. Effects of sugar feeding supplemented with three plant extracts on some parameters of honey bee colo-nies. Saudi J Biol Sci 2021; 28: 2076–82.

● 44. Ricigliano V, Simone-Finstrom M. Nutritional and prebiotic efficacy of the microalga Arthrospira pla-tensis (spirulina) in honey bees. Apidologie 2020; 51: 898–910. doi: 10.1007/s13592-020-00770-5

● 45. Jehlík T, Kodrík D, Krištůfek V, et al. Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera. Apidologie 2019; 50(4): 564–77. doi: 10.1007/s13592-019-00670-3

● 46. Ricigliano VA, Ihle KE, Williams ST. Nutri-genetic comparison of two Varroa-resistant honey bee stocks fed pollen and spirulina microalgae. Apidologie 2021; 52: 873–86.

● 47. Tlak Gajger I, Ribarić J, Smodiš Škerl M, Vlainić J, Sikiric P. Stable gastric pentadecapeptide BPC 157 in honeybee (Apis mellifera) therapy, to control Nosema ceranae invasions in apiary conditions. J Vet Pharmacol Ther 2017; 41(4): 614–21. doi:10.1111/jvp.12509

● 48. Sammataro D, Weiss M. Comparison of productivity of colonies of honey bees, Apis mellifera, supplemented with sucrose or high fructose corn syrup. J Insect Sci 2013; 13: e19. doi: 10.1673/031.013.1901

● 49. Burnham AJ. Scientific advances in controlling Nosema ceranae (Microsporidia) infections in honey bees (Apis mellifera). Front Vet Sci 2019; 6: e79. doi: 10.3389/fvets.2019.00079

● 50. Mutinelli F. The spread of pathogens through trade in honey bees and their products (including que-en bees and semen): overview and recent develop-ments. Rev Sci Tech 2011; 30: 257–71.

● 51. Higes M, Martín-Hernández R, Meana A. Nose-ma ceranae in Europe: an emergent type C nosemosis. Apidologie 2010; 41: 375–92.

● 52. Higes M, Martín-Hernández R, Botías C, et al. How natural infection by Nosema ceranae causes ho-ney bee colony collapse. Environ Microbiol 2008; 10: 2659–69.

● 53. Genersch E, Ohe W, Kaatz H, et al. The Ger-man bee monitoring: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 2010; 41(3): 332–52. doi: 10.1051/apido/201 0014

● 54. Gisder S, Hedtke K, Möckel N, Frielitz MC, Linde A, Genersch E. Five-year cohort study of Nose-ma spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Appl Environ Mic-ro-biol 2010; 76: 3032–8.

● 55. Botías C, Martín-Hernández R, Barrios L, Me-ana A, Higes M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet Res 2013; 44(1): e25. doi: 10.1186/1297-9716-44-25

● 56. Rivera-Gomis J, Bubnic J, Ribarits A, et al. Go-od farming practices in apiculture. Rev Sci Tech 2019; 38(3): 879–90. doi: 10.20506/rst.38.3.303.

Downloads

Published

2022-11-02

How to Cite

Smodiš Škerl, M. I., & Tlak Gajger, I. (2022). PERFORMANCE AND Nosema spp. SPORE LEVEL IN YOUNG HONEYBEE (Apis mellifera carnica, Pollmann 1879) COLONIES SUPPLEMENTED WITH CANDIES. Slovenian Veterinary Research, 59(3). https://doi.org/10.26873/SVR-1498-2022

Issue

Section

Original Research Article