HEMATOLOGICAL AND BIOCHEMICAL PROFILE IN FEMALE CAMELS (CAMELUS DROMEDARIUS) DURING THE TRANSITION PERIOD

Eman A. Ebissy¹, Ahmed A. El-Sayed¹*, Ragab Hassan Mohamed²

¹Department of Animal health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Matariya, Cairo, Egypt, ²Theriogenology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt

*Corresponding author, E-mail: decernes@yahoo.com

Abstract: The aim of the present study was to evaluate the hematological and biochemical alterations in female camels during the transition period. Ten apparently healthy camels were randomly selected and subjected to clinical examination. The investigated camels demonstrated no detectable clinical illness and kept under veterinary supervision throughout the study period. A blood sample was collected from each camel for laboratory investigation before and after 2 and 4 weeks of parturition and at time of parturition. Our findings revealed a significant (p=0.001) high values of neutrophils, MCH and MCHC at +14, and a significant (p=0.001) low values of lymphocyte count at -14 and at time of parturition. The globulin concentration increased significantly (p=0.029) at +28. For serum phosphorus and magnesium concentrations, their values were significantly (P< 0.05) elevated at -14 and +28, respectively, while enzymatic activity of liver enzymes including aspartate aminotransferase (AST), γ-glutamyl transferase (GGT) and alkaline phosphatase (ALP) were significantly (P< 0.005) elevated at +14, while serum activity of GGT and ALP continued at the same pattern at +28. For serum glucose and cortisol concentrations, their values were significantly elevated at (0), while serum creatinine concentrations were significantly (p=0.023) decreased at +14. Estrogen concentration increased significantly at -14 and 0, but decreased significantly at +14 and +28. Progesterone concentrations increased significantly at -14 and decreased at 0, +14 and +28. Other tested parameters did not differ significantly pre- and post-partum. The data presented in this study could be used as a reference guide for female camels during the transition period.

Key words: Biochemistry; camel; hematology; transition period

Introduction

Dromedary camels are characterized by a seasonal activity and induced ovulators. Reproductive physiology of Arabian dromedary camels has gotten little interest compared to other animal species, especially in relation with changes in blood constituents. Changes in several biochemical parameters have been recommended for reproductive disappointments (1). Severe economic losses can result from suboptimal transition of pregnant animal from the late-pregnancy to lactation; this could probably to impaired production and reproductive performance (2, 3). Hence, optimal transition
requires a comprehensive understanding of biochemical alterations that occurs during the transition period (4).

The transition period, defined as three weeks around the time of calving, is characterized by distinct endocrine alterations that are much more dramatic than at any other time stage of lactation–gestation cycle (2, 5). In Egypt, only limited data on serum biochemistry and hematology of one humped camel are available in the literature (6) and most of these literatures encompass limited laboratory measurements (7, 8). Therefore, the present study is an attempt to provide an insight into the dynamics of selected haematobiochemical alterations in the transitional one humped camel in order to provide potentially new and useful information about the guidelines for the management strategies during different physiological phases.

Materials and methods

Animals

The present study included ten apparently healthy female dromedary camels reared at Mariut Research Station, Desert Research Center, El-Amria, Alexandria, Egypt. Their mean body weight was 415 kg (range: 313 - 590 kg) and their mean ages were 12.6 years (range: 10-15 years). All procedures were performed in accordance with the guidelines of Desert Research Center (Egypt) and approved by its Ethical Committees. The camels were considered clinically sound on the basis of physical examination of heart, lungs, rumen and intestine and other vital signs (9, 10) in tandem with the preliminary findings of hematological examination. Camels were housed in an open yard and fed on a maintenance ration composed of a concentrate mixture including 50% corn, 47% barley, 2% minerals, 1% salt which given at rate of 3 kg/head/day, while Egyptian clover hay (Trifolium alexandrinum) and fresh water were offered *ad libitum*.

Blood sampling

Ten milliliter of blood was collected from each animal at -28, -14, 0, +14 and + 28 days of expected date of delivery via jugular vein puncture using vacutainer tube containing anticoagulant (EDTA or sodium fluoride) and without anticoagulant to yield whole blood or serum, respectively. The tubes containing EDTA were used for prompt hematologic examination. The hematological indices included total leucocytes (WBC) and differential leukocyte count (lymphocytes, neutrophils, monocytes, and eosinophils), red blood cells (RBC), hemoglobin (HGB), hematocrit, mean erythrocyte volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) which were carried out on automatic blood cell counter (Exigoees veterinary Hematology system, Boule Medical AB, Sweden). On the other side, tubes containing sodium fluoride were used for quantifying concentrations of glucose which were measured spectrophotometrically using a commercial test kit supplied by Spectrum Egypt (Ref: 250-001). The plain tubes were kept at room temperature overnight to be centrifuged at 3000 rpm for 15 minutes. Only clear sera were collected then aliquoted and kept frozen at -20 0C for subsequent biochemical analyses using commercial test kits according to the standard protocols of suppliers. For the total protein, albumen, calcium, phosphorus, magnesium and creatinine, commercial test kits supplied by BioMed Egypt were used (Ref: ALB100250; TP116250; CAL103100; PH123100, MG122050 and CRE 106100), respectively. For AST, ALP, γ GT and cholesterol, commercial test kits supplied by Spectrum Egypt were used (Ref: AST260001; ALP214001; γ GT246001 and CHOL230001), respectively. For BUN, commercial test kits supplied by BioScien Egypt were used (Ref: BSU117100). For cortisol and estradiol, commercial test kits supplied by Parameter™ USA were used (Ref: KGE008B and KGE014), respectively. For Progesterone, commercial test kit supplied by Oxford Biomedical Research USA was used.
Hematological and biochemical profile in female camels (Camelus dromedarius) during the transition period

(Ref: EA 74). For creatinine kinase, commercial test kit supplied by Bio Chain USA (Ref: Z5030048) was used.

Statistical analysis

Statistical analyses were carried out using a statistical software program (SPSS, ver.20, Inc., Chicago, USA). Descriptive statistics were performed for all parameters. Repeated measures ANOVA was used to test the effect of physiological status during the transitional period on blood metabolic profile. Results were considered statistically significant at P < 0.05.

Results

An overview of serial measurements of hematological and serum biochemical profile in the studied camels during the transition period was illustrated in Tables 1 &2. Clinically, the investigated animals showed no detectable clinical alterations throughout the study period and remained clinically healthy. All camels demonstrated normal laboring and delivered a single calf without obvious clinical illness.

Table 1 illustrates the hematological variables in examined camels. The total white blood cells revealed non-significant differences (P = 0.296) through the different time points (-28, -14, 0, +14 and +28). Lymphopenia was observed at – 14 and 0 time points (P = 0.001) and neutrophilia at +14 and +28 postpartum (P = 0.001). There was no significant difference between Monocyte and eosinophils during the periparturient period (P = 0.730 and P=0.447, respectively). There was no significant difference between the red blood cells, haemoglobin, hematocrit and MCV (P>0.05) throughout the periparturient period. On the other side, the MCH and MCHC increased significantly at +14 after parturition (P=0.001).

Table 2 summarizes the biochemical variables in examined camels. Serum concentrations of the total protein and albumin concentrations did not differ significantly among all the tested time points pre- and post-partum (P>0.05). However, globulin concentrations were significantly (P=0.029) increased at +28. Calcium concentration did not differ significantly among all the tested time-points pre- and post-partum (P=0.201). While concentrations of serum inorganic phosphorus and magnesium were significantly (P=0.004 and 0.023) increased at -14 and +28 respectively. For serum activity of AST, GGT and ALP, their values showed a significant increase (P>0.05) at +14. The concentration of ALP and GGT remained also at a significant (P = 0.001) high pattern at +28 after parturition. In contrast the serum activity of creatinine kinase did not differ significantly pre- and postpartum (P = 0.125).

Concentrations of serum glucose were significantly (P = 0.001) elevated at the time of parturition. The serum concentration of BUN did not show any significance at the tested time points (P = 0.370). However, creatinine concentrations were significantly (P = 0.023) decreased at +14 post-partum. Serum concentration of cortisol showed a significantly (P = 0.001) elevation at the time of parturition. hand the concentration of serum estrogen was increased significantly at -14 and 0, but decreased significantly at +14 and +28 (P = 0.001). The serum progesterone level increased significantly at -14 and decreased at 0, +14 and +28 (P = 0.001).
Discussion

The transition period in dromedary camels has gained very little attention relative to that of dairy cattle although a limited report has exist in guanacos (Lama guanicoe) and in the llama (Lama glama) (7, 8). Indeed, laboratory profiling can detect sick animals, and help identify herds at a potential risk of having metabolic and reproductive ailments. To fulfill this research gap, we sampled ten female pregnant dromedary camels at four weeks prior to the anticipated time of parturition to four weeks after calving. In this study, the most noticeable hematological changes in the female camels during the transition period were neutrophilia which was occurred at +14 and +28. This finding was in accordance with that reported previously in transition camel (11) and in cattle during the periparturient period (12). The authors
attributed such finding to stress being associated with parturition and the beginning of lactation stage.

The current study revealed that the serum concentration of calcium did not show significance pre- and post-partum. This finding was in agreement with that previously given in camel (11, 13) but away from that reported by other researchers (14, 15) who found lower calcium levels at the end of pregnancy in dromedary camel and buffaloes, respectively. The authors attributed such findings to the impairment of absorption of these metabolites from the alimentary tract and to the excessive losses through urine, colostrum.

In the current study, there was a significant increase in the serum phosphorus level prepartum and declined thereafter. This finding was in constant with that given by (11) in camel and that reported in buffalo (15) who found lower phosphorus levels during early stage of lactation in buffaloes. The authors attributed such finding as a result of the important role of phosphorus in the colostrums synthesis (16) and enhanced carbohydrate metabolism.

Magnesium plays a vital role during the metabolism of carbohydrates, lipids, nucleic acids and proteins. In present investigation, there was a significant increase in the serum magnesium at +28 days postpartum. Our finding was similar to that obtained in transition camel (11) and in Ongole cows but away from that reported by (18) who recorded lowered magnesium mean values in cattle and buffalo during early lactation.

The alterations of serum globulin, but not albumin, could be resulted from the formation of immunoglobulins. This finding was noticed to be in harmony with that given in transition camel (11) and in dairy cows (5), while the decrease of serum albumin levels could be associated with hepatic diseases. This finding is in accordance with previous reports in transition camel (11, 21). However, in this study its reduction was not significant.

In the present study, there was a significant decrease in the serum creatinine level at +14 days postpartum. This finding is in constant with that reported previously in periparturient camel (11) and in transition cattle (12). The creatinine level (marker of kidney function) is dependent on total body content of creatinine, which in turn depends on the dietary intake, rate of synthesis of creatinine, and muscle mass (19). The creatinine concentrations in the prepartum period were higher than those in postpartum. This finding is line with that reported previously (20) at late gestation camel who found high creatinine levels in dromedary camels during late gestation. The authors attributed such finding to high requirement of protein and lower rate of kidney elimination associated with late stage of pregnancy (13).

In the current study, there was a significant increase in the serum activity of AST, GGT and ALP at +14. The serum activity of GGT and ALP remained also at a significant (P=0.001) high pattern at +28 after parturition. Our findings were similar to that obtained in periparturient camel (11) and in dairy cows (5) but unlike to that given in late pregnant dromedary camels (22) and in pregnant mares (23) who reported a significant decrease in the GGT activity in the pregnant camels and in pregnant mare. It has been suggested that GGT is involved in the metabolism of glutathione to maintain antioxidative status of the entire body (24).

The increased concentration of glucose at parturition (0) may be due to the stress of parturition and coincide with elevation of cortisol at this period. This finding was in agreement with that given previously in transition camel (11) and in dairy cows (5) but unlike to that given by other researchers (25, 26) in periparturient dromedary camel who reported a significant decrease of glucose concentration before parturition compared to the period after. In the former study, the authors attributed such finding to the effect of gestational state on glucose level.

The current study revealed that, the serum level of BUN did not show any significance pre- and post-partum changes. This finding was in agreement with that given in transition camel (11) but in contrary with that reported in pregnancy of dromedary camels (22). The authors reported a significant increase of serum BUN in pregnant camels. The authors attributed such
finding as a result of protein catabolism and high requirement for energy by pregnant camels during the late pregnancy period resulting to an increase in BUN level.

Our findings demonstrated that concentration of serum cortisol was significantly increased at parturition (0) which may be due to stress of parturition due to the increase in the concentration of ACTH secretion from the foetal pituitary (11, 27, 28,29).

The serum activity of estrogen was elevated at -14 and reached its maximum peak at the time of parturition and declined thereafter. Such elevation of serum estrogen is considered as physiological response to potentiate uterine contraction during parturition. These findings were in agreement with that given by (11, 30, 31, 32) in camel and (33, 34) in goat. The authors attributed the dropped of maternal estrogen postpartum to that the estrogen measured in pregnant camel was fetoplacental in origin. On the other side, serum activity of progesterone was lowered at the time of parturition and the time onward (i.e. 0 to +28) which was considered as a physiological response in order to remove the corpus luteum of pregnancy. These findings were in agreement with that given by (11, 33, 34).

Conclusion

The data herein demonstrated a profound haematobiochemical alteration which could be considered as a feature of transition period in peripartum camels. Such alterations are not necessarily indicative of disease but could reflect a physiological variation and could be used as a reference guide for she-camels during the periparturient period.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

The authors acknowledge the staff members of Animal Health and Poultry Department, Desert Research Center, Egypt.

References

13. Omidi A, Sajedi ZH, MontazerTorbati MB, Mostafai M. Metabolic profile of pregnant, non-
Hematological and biochemical profile in female camels (Camelus dromedarius) during the transition period


