BLINDED PLACEBO STUDY OF BILATERAL OSTEOARTHRITIS TREATMENT USING ADIPOSE DERIVED MESENCHYMAL STEM CELLS

Luka Mohoric1, Bojan Zorko2, Katerina Ceh1, Gregor Majdic3,4*

1Animacel biotechnology ltd; 2Small animal clinic, 3Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, 4Institute of physiology, Medical faculty, University of Maribor, 2000 Maribor, Slovenia

*Corresponding author, E-mail: gregor.majdic@vf.uni-lj.si

Summary: Mesenchymal stem cell therapies attract a lot of attention and also controversy in veterinary medicine. In the present study, mesenchymal stem cell therapy, using autologous cells from adipose tissue was evaluated for the treatment of osteoarthritis in the knee. Ten dogs with bilateral osteoarthritis in the knees were included in the study. After collection of adipose tissue and expansion of cells, 2 to 3 millions of mesenchymal stem cells were injected into one knee while sterile phosphate buffer (same as used for resuspension of cells) was injected into the other knee as a placebo. Dog owners were blind in regard which knee received cells and which placebo. Dogs were clinically evaluated before treatment and 3, 6 and 12 months after the treatment, and synovial fluid was collected and evaluated before treatment and after 12 months. Radiographs of both knees were taken before treatment and 6 and 12 months after the treatment. In 9 out of 10 dogs enrolled in the study, there was a significant improvement of lameness after 1 year. Radiographs did not show improvement in the cartilage condition 1 year after the treatment. However, in 7 out of 10 treated joints the osteoarthritis did not progress while in all 10 of placebo treated joints there was a significant worsening of the osteoarthritis. Analysis of the synovial fluid before and 1 year after the treatment showed no statistically significant differences between mesenchymal stem cells treated and placebo treated knees. Results of this study suggest beneficial effects of mesenchymal stem cells treatment in osteoarthritis in dogs and confirm that mesenchymal stem cells treatment is a viable option for managing this debilitating disease in dogs.

Keywords: dog; osteoarthritis; knee; mesenchymal stem cells

Introduction

Osteoarthritis is a common disease in dogs that affects dogs of all ages. Although large joints such as hips, elbows and knees are most often diagnosed with osteoarthritis, this disease could affect many other joints including vertebral facet joints, carpal and tarsal joints, and also metacarpal and metatarsal joints (1, 2). The incidence of osteoarthritis in general population of dogs is about 20 %, while in aging (older than 8 years) dogs, it can reach up to 80 % (3). Clinical signs of osteoarthritis are very variable, but most common signs are pain and reduced physical functioning of dogs (1, 2). Currently, osteoarthritis cannot be cured and dog owners are usually offered pain management. With proper pain management the quality of life of dogs could be improved, although the disease cannot be cured and regular pain management therapy is both financial and lifestyle burden for dogs and their owners, and could have significant side effects (1, 2).

In recent years, stem cells have attracted a lot of attention as potential source of biological agents for regenerative treatments. Basic studies in laboratory rodents are slowly translated into clinical settings.
Stem cells are generally divided into three categories: (i) embryonic stem cells that are obtained from very early embryos, (ii) adult stem cells that can be found in different adult tissues, and (iii) induced pluripotent stem cells which are adult differentiated cells turned into stem cells by activation of several genes in these cells (4-7). Adult stem cells are most often derived from adipose tissue or bone marrow and are usually called mesenchymal stem cells (8). These are currently being exploited in numerous basic studies and clinical trials. Adult mesenchymal stem cells have several important advantages for potential clinical use as they can be easily obtained from different tissues, and they are suitable for autologous treatments as they can be obtained from diseased patients (8).

Several basic and clinical studies have suggested beneficial effect of adult mesenchymal stem cells in the treatment of osteoarthritis in different species from laboratory animals to dogs and horses (9-14), although there is still an urgent need for more clinical trials to confirm the benefit of stem cell treatments in dog osteoarthritis.

In the present study, we have therefore evaluated the efficacy of mesenchymal stem cell treatment for knee osteoarthritis in adult, clinical patients, dogs.

Material and methods

Patients

Ten dogs with bilateral osteoarthritis were included in the current study. All dogs were clinical patients at the Clinic for small animals at Veterinary faculty, University of Ljubljana. Five of them were German boxer and five were other breeds. Five were male and five were female. Average age of dogs was 6.2 years. Dog owners voluntarily participated in the study after being informed about all potential risks and benefits of such trial treatments and have signed an informed consent (in Slovenian language). All animal procedures were performed according to the best practice of Veterinary care. As study was done on a client owned clinical patients, no approval from ethical committee was needed according to the Slovenian legislation.

Before treatment all dogs were clinically, neurologically and radiographically examined and the osteoarthritis was confirmed in both knee joints. All dogs were negative to tick diseases and had no sign of any infection.

On day one all dogs were lame. Lameness was divided into five groups according to Brunnberg (15) from 0 to IV. O = normal; I = hardly noticeable lameness; II = noticeable, leg is still loaded; III = noticeable, leg is occasionally not loaded; IV = leg is not loaded.

On radiographs all dogs had severe signs of osteoarthritis and were also divided in five groups according to Brunnberg (28) 0 = normal; I = minimal osteophyte formation; II = obvious osteophyte formation; III = multiple moderate osteophyte formation; IV = large osteophyte formation and deformity of bone ends.

Tissue collection

Dogs were premedicated with morphine (Morphini chl., Alkaloid, Skopje Macedonia) 0.3 mg/kg s/c, and anesthesia was induced with midazolam (Midazolam Torrex, Chiesi Pharmaceuticals, Manchester, UK) 0.1 mg/kg iv and propofol (Norofol, Norbrook Laboratories, Corby, UK) 3 - 4 mg/kg iv and maintained with sevoflurane (Sevorane, Abbott, Maidenhead, UK) in oxygen. Dogs were administered Lactated ringer's solution (Hartmann solution, B Braun, Melsungen, Germany) during anesthesia (5 ml/ kg/h i/v). Adipose tissue was collected through small incision on the back between scapulae. Tissue was immediately placed in the transport media and transported into the cell culture laboratory.

Cell preparation

Tissue was dissected into small pieces and incubated with 1 mg/ml collagenase (Sigma, Taukirchen, Germany) overnight. Following day, digested tissue was centrifuged at 3000 g for 5 minutes. Supernatant was discarded and pellet of cells was resuspended in cell culture media containing DMEM and 10 % fetal bovine serum. Cells were plated into 6 well plates and grown in standard conditions at 37 °C and 5 % CO2. After reaching confluency, cells were trypsinized and transferred into larger, 25 cm² dish, where they were grown again until confluency. Confluent cells from 25 cm² dish were trypsinized, centrifuged at 3000 g for 5 minutes, washed with 1 ml of PBS, centrifuged again and finally resuspended in 1 ml of sterile PBS.
Cell injection

Two to three millions of cells were placed in the syringe and transported to the orthopaedic veterinarian. Dogs were again anaesthetized. Cells were injected directly into one of the osteoarthritic knees, while sterile PBS was injected as placebo into the other knee. Prior to application, synovial fluid was collected from both knees, and examined for appearance, total protein, albumins, total cell count, alkaline phosphatase (ALP) and alanine transaminase (ALT).

Clinical evaluation

All dogs were examined 3, 6 and 12 months after stem cell application. During clinical examination, differences in lameness, joint pain, signs of inflammation or infection, neurologic deficit and any other diseases were observed. At the same time the owners were asked about their observations.

Radiography

Radiographs of all dogs were taken 6 and 12 months after the treatment and examined for any signs of improvement or progression of osteoarthritis and any signs of infection or other pathologic bone conditions.

Synovial fluid analyses

Synovial fluid was collected at the time of stem cell injection and 1 year after the treatment and also examined for any signs of osteomalacia, infection, inflammation, bone destruction.

Results

Clinical evaluations

All dogs were examined 3, 6 and 12 months after treatment. Before treatment, 7 dogs showed signs of limping scored by 2 according to Brunnberg scale, and 3 dogs showed limping scored by 3. One year after treatment, limping was improved in all but one dog and results for all individual dogs are presented in figure 1.

Radiographic evaluations

Dogs were subjected to radiography before treatment and at 6 and 12 months after the treatment (Figure 2). Although there was no significant improvements in the size of osteophytes in the joints observed on autoradiographs after 12 months, in all (10 out of 10) joints that received placebo treatment there was worsening of the joint status, while in 7 out of 10 joints treated with mesenchymal stem cells the radiographic score in the joints remained the same, suggesting that stem cell treatment did stall the progress of osteoarthritis. The difference was statistically significant using chi-square test with p < 0.001 (Table 1).

Synovial fluid examination

Concentration of total protein content, albumins, alkaline phosphatase and alanine aminotransferase did not differ significantly between treated and untreated joints, and before and after the treatment (Fig 3a and 3 b), suggesting that stem cell application did not cause any long
Radiographic evaluation before and 12 months after treatment	MSC treated joint	Placebo
Same | 7* | 0 |
Worse | 3* | 10 |

Table 1: Autoradiographic evaluation revealed that size of osteophytes increased in all placebo treated joint while in 7 out of 10 joints treated with MSC the osteoarthritis did not progress (*Chi² p < 0.001)

Discussion

Osteoarthritis is debilitating disease that affects many dogs and could affect different joints (1, 2). Currently, there is no treatment for this disease. In the present study, we have therefore evaluated clinical and autoradiographic outcomes of mesenchymal stem cell treatment in dogs, suffering from osteoarthritis in both knees.

Osteoarthritis is very prevalent in older dogs, where it can affect up to 80% of dogs over 8 years old, but it could also affect much younger dogs (3). Although some of the symptoms of osteoarthritis can be eased with pain relief therapy, the disease is currently incurable and presents an important financial and psychological burden for dog owners. Current methods for managing osteoarthritis include classical pain relief and nonsteroidal antiinflammatory drugs, often combined with functional foods, physical therapy and alternative therapies such as acupuncture. In severe cases, surgery and joint replacement could be also performed, but this is very costly procedure and therefore not suitable for average dog owner (2).

Stem cells from different sources have attracted a lot of attention in recent years due to their potential use in regenerative medicine. Several studies, both preclinical and clinical in dogs and also in humans have provided some evidence that mesenchymal stem cells might have beneficial effects in the treatment of osteoarthritis (9-11, 14). However, there are still very few clinical studies that would confirm positive effects of mesenchymal stem cells in clinical patients. In the present study mesenchymal stem cells obtained from adipose tissue of dogs, affected by severe...
Blinded placebo study of bilateral osteoarthritis treatment using adipose derived mesenchymal stem cells

Figure 3: Total protein content (TP) and albumins (a), alanine aminotransferase (ALT) and alkaline phosphatase activity (AP; b) and number of cells (c) were similar in MSC treated and placebo joints before and after the treatment, suggesting that MSC application did not cause any long lasting inflammation of the joints. All values were within the physiological levels for synovial fluid.

Osteoarthritis, were used for the treatment of dogs with bilateral osteoarthritis in the knee. Adipose tissue derived stem cells were chosen as they are easily obtainable in large quantities from adipose tissue of dogs, affected by osteoarthritis.

Clinical evaluations of our patients revealed significant improvement in limping as assessed by Brunneberg scale (15). Interestingly, the first clinical signs of improvement were noticeable only 2 to 3 months after treatment, and were very obvious one year after treatment. Although some owners reported improvements much earlier, this was not confirmed during clinical examination and is presumably placebo effect on dogs’ owners. Interestingly, although there was a marked clinical improvement, autoradiographic evaluations 12 months after the treatment did not reveal improvements in the joint structure in any of the treated knees. However, in comparison to untreated joints, the stem cell therapy seemed to slow down or even stopped degenerative processes, as in 7 out of 10 treated knees, the autoradiographic evaluation did not show any progression of disease while in all 10 knee joints receiving placebo treatment, osteoarthritis have significantly progressed. Interestingly, 4 out of 10 dogs came to the clinic again 18 months after the treatment and underwent x-ray imaging again. In all four dogs, there was an improvement of joint surface (significant reduction of osteophytes) in treated joints only.
Although several studies have shown beneficial effects of mesenchymal stem cell treatments in osteoarthritis in different species, it is not known how is this beneficial effect achieved. Several studies, mostly in rodents, have tried to track mesenchymal stem cells after injection into affected joints and most studies could not find any evidence of stem cells engrafting into the cartilage or bone tissue (16-20), although some engrafting cells were detected in synovial membranes and menisci in rabbits and goats (16, 19). Dessando et al. (16) have shown that in rabbits, joints treated with MSC had reduced expression of tumour necrosis factor alpha, an inflammatory cytokine, and reduced expression of matrix metaloproteainase 1. Similarly, studies in mice (21), goats (19) and horses (22) have shown anti-inflammatory effects of MSC in osteoarthritic joints. Therefore, it is currently thought that mesenchymal stem cells effect in osteoarthritis might be more due to their anti-inflammatory effects, rather then regenerative capabilities. This is supported by our study as we did detect significant clinical improvement in dogs, but that was not, at least one year after the treatment, accompanied by the improvement in the structure of the joints.

As described before, results of our analysis of the inflammatory response following the application of MSC suggest that the application of stem cells did not cause any long-lasting inflammation in the joint. Nevertheless we have only used synovial fluid as a sample for the analysis due to the non-invasiveness of the collection method, as our study was done on owned dog patients and any more invasive procedures would be unethical. Therefore, the possible effect of stem cells on the local inflammation and concentrations of the immune system mediators in the synovial membranes was not examined. However, there is a substantial body of evidence showing that the secretome of mesenchymal stem cells does reduce the local inflammation in the synovial membrane and in the extracellular matrix of the cartilage. The mediators involved in this process are thought to be Indolamin-2,3-dioxigenase-1, Interleukin 6, Tumor factor alpha and Tumor factor beta (23-25). These mediators would serve as good markers of local inflammatory response for further investigation.

Some studies have reported only short to medium term beneficial effects of MSC treatment in osteoarthritis (26, 27). However, in our study, we have found that beneficial effect of MSC treatment was prolonged and was evident by clinical examination at least a year after the treatment, and even more interestingly, the improvement of the cartilage appeared in some dogs only 18 months after the treatment. We were not able to trace the cells in the dogs, as all dogs were clinical patients and not laboratory dogs, and therefore we could not used labeled cells. Therefore, we do not know if there was an engraftment of MSC in our study, although prolonged effect of MSC does suggest that stem cells must have engrafted into some tissues. However, this does not mean that stem cells had to engraft into the cartilage and differentiate into cartilage tissue, perhaps, as suggested by previous studies, MSC engraft only in soft tissues but nevertheless secret anti-inflammatory substances and trophic factors that contribute to the healing of the joint from these tissues.

Presented blind placebo study of bilateral knee osteoarthritis shows that MSC treatment had beneficial effect in almost all treated dogs with the improvement of clinical signs. Although there was no evident improvement in radiographs 1 year after the treatment, it appears that stem cell treatment did stall the progress of osteoarthritis as in all joints receiving placebo, severity of osteoarthritis progressed in one year while in majority of MSC treated joints there was no progression of osteoarthritis. This study therefore suggests a positive effect of MSC treatment for managing osteoarthritis in dogs.

Acknowledgment

This study was supported by ARRS (Slovenian research agency) grant P4-0053. K.C. and G.M. are partial owners of Animacel biotehnologija ltd.

References

SLEPA PLACEBO RAZISKAVA ZDRAVLJENJA VNETJA KOLENSKEGA SKLEPA Z MEZENHIMSKIMI MATIČNIMI CELICAMI

L. Mohoric, B. Zorko, K. Ceh, G. Majdic

Ključne besede: pes; vjetje sklepov; kolo; mezenhimske matične celice